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A simple upper bound on the information rate (IR) of digital communi-
cations over phase noise-impaired channels is proposed. In particular,
the transmission of linearly modulated signals, such as QAM, at high-
signal-to-noise ratio is considered, thus extending previous literature
results for phase modulated signals, e.g. PSK. A simulation-based
lower bound on the IR shows that the proposed bound is tight for
small-medium size constellations and large phase noise.
Introduction: Phase noise collectively denotes unwanted random fluctu-
ations in the phase of the waveform generated by an oscillator and can
cause distortion and performance degradation in digital communication
systems [1]. Phase noise-impaired channels are of interest in several
scenarios, including millimetre-wave digital wireless communications
[2], distributed MIMO systems [3], and optical communications [4, 5].

Phase noise-limited communications can be analysed from various
viewpoints. In particular, the achievable information rate (IR), i.e. the
maximum amount of information bits which can be reliably transmitted
over the considered channel with a given modulation format, has been
considered as it can give insights on the design of practical communi-
cation systems, see, e.g. [4, 6] and references therein. In [6], the
author presents a simple closed-form upper bound for phase shift
keying (PSK) modulations derived in the high-signal-to-noise ratio
(SNR) regime, but valid for any SNR.

In this Letter, we extend the bound of [6] to amplitude and phase
modulations, e.g. quadrature amplitude modulation (QAM) or amplitude
and PSK (APSK). Simulation-based estimation of a lower bound on the
IR shows that the proposed upper bound is tight. This upper bound can
be useful to predict the performance of linear modulations in the
high-SNR regime, where the simulation-based lower bound may
exhibit numerical problems [4].

System model: We consider the transmission of linearly modulated data
symbols {xk}, independent and uniformly distributed onto a constella-
tion of cardinality M. Assuming Nyquist shaping with matched filtering
and slowly variant phase noise, the sampled sequence at the channel
output is [6]

yk = xk e
juk + nk

where {nk} are independent and identically distributed (i.i.d.) additive
white Gaussian noise samples. The phase noise process can be described
as first-order Markov, where

uk = uk−1 + Dk mod 2p (1)

with i.i.d. increments Dk � N (0, s2
D). Therefore, the conditional prob-

ability density function (PDF), given the previous realisation, depends
only on the phase difference and has the following wrapped Gaussian
form on [0, 2π) [6, 7]

p(uk |uk−1) = 1�������
2ps2

D
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Using a polar decomposition, the generic kth transmitted and received
symbols can be expressed as

xk = ak e
jwk (2)

yk = bk e
jck (3)

where ak and bk are the input and output amplitudes, respectively,
whereas wk and ψk are the input and output phases, respectively. The
transmitted symbol amplitude ak is a random variable which belongs
to a set of discretised radii {r1, r2, …, rL}, being L the number of poss-
ible amplitude values, each of them with probability

pi = # points with radius ri
M

i = 1, 2, . . . , L

The values ri and pi, i = 1, 2,…, L, depend on the considered constellation.
A pictorial description for 16-QAM constellation, where L = 3, is

shown in Fig. 1.
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In this case, denoting by d the distance between adjacent points, it can
be easily shown that r1 = d/
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probability p1 = 1/4, p2 = 1/2, and p3 = 1/4, respectively. Note the sub-
constellations described by the inner and outer circles are standard
PSK constellations, whereas the intermediate one (i.e. that with radius
r2) is not, due to the non-equally spaced points on the circle.
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Fig. 1 Polar decomposition for 16-QAM constellation

Simple upper bound: We now extend the upper bound, described in [6]
for phase modulations, to general linear modulations. Since the IR is a
non-decreasing function of the SNR, the bound will be derived assum-
ing a high-SNR regime, where the observation model is

yk = xk e
juk (4)

so that, according to (2) and (3), bk = ak and ψk = wk + θk.
Given the channel input and output stochastic processes X and Y,

respectively, the IR is defined as

I(X ; Y) = lim
N�+1

1

N
I(xN1 ; y

N
1 )

where N is the length of the information sequence and the notation zba
(a < b) stands for the sequence {z a, …, z b}. Following the approach
in [5], by resorting to a proper application of the chain rule the IR can
be decomposed as

I(X ; Y) = I (A; B)+ I(F; C|A)+ I(A; C|B)+ I (F; B|A, C)

where A and B are the stochastic processes associated with input and
output amplitudes, respectively, whereasΦ andΨ are the stochastic pro-
cesses associated with input and output phases, respectively.

In the high-SNR regime, the third and fourth term, corresponding to
mixed amplitude/phase terms, are null. In fact, the third term

I(A; C|B) = H(A|B)− H(A|C, B) = 0

where H(·) is the discrete entropy rate, since, at high SNR,A is perfectly
known given B, i.e. H(A|B) = H(A|C, B) = 0. The fourth term

I(F; B|A, C) = H(F|A, C)− H(F|A, B, C) = 0

because H(F|A, C) = H(F|A, B, C), as B is perfectly known given
A. Hence, the IR at any value of SNR can be upper bounded as

I (X ; Y) ≤ I (A; B)+ I(F; C|A) (5)

The amplitude term in (5) can be expressed as

I (A; B) = H(A)− H(A|B) = H(A)

where H(A|B) = 0 due to (4). Therefore, one can write

I (X ; Y) ≤ I (A; B)+ I(F; C|A)

= H(A)+ h(C|A)− h(C|F, A) (6)

where h(·) denotes the differential entropy rate of a continuous
stochastic process. If sD≫1, the received phase is uniformly distributed
on [0, 2π) so that h(C|A) ≃ h(C|F, A). Therefore, (6) reduces to

I (X ; Y) ≤ H(A) sD≫1 (7)

i.e. for large phase noise intensity, only the information associated with
the amplitude component can be transmitted reliably over the channel.
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The differential entropy h(C|A) in (6) can be upper bounded by that
of a random variable uniformly distributed on [0, 2π). The entropy rate
h(C|F, A) can be evaluated by resorting to the definition of entropy rate
of a stochastic process and the chain rule

h(C|F, A) = lim
N�+1

1

N
h(cN

1 |wN
1 , a

N
1 )

= lim
N�+1

1

N
h(c1|w1, a1)+

∑N
k=2

h(ck |ck−1, w
k
k−1, a

k
k−1)

[ ]

By definition of the Wiener phase noise process, h(c1|w1, a1) = h(u1) =
log2 (2p) bit, since the wrapped phase channel rotation has marginally a
uniform distribution on [0, 2π), and

h(ck |ck−1, w
k
k−1, a

k
k−1) = h(D) ∀k (8)

where Δ is the stochastic process of i.i.d. wrapped Gaussian variables. In
fact, the output phase at time instant k, for fixed output phase at time
instant k− 1 and input phases at time instants k and k− 1, only
depends on the Gaussian increment Δk. The differential entropy rate
h(Δ) in bits can be found in [8] as

h(D) = log2 (2p)−
∑+1

i=1

log2 1− qi
( )+ 2

ln 2

∑+1

i=1

(−1)i

i

q(i
2+i)/2

1− qi

where q = e−s2
D . Using (8) into (6), one has

I(X ; Y) ≤ H(A)+ log2 (2p)− h(D) bit/channel use

Finally, since for a fixed constellation size M the IR cannot be greater
than log2 M bit/channel use (in particular for small phase noise
intensities), the desired upper bound can be expressed as

I(X ; Y) = min log2 M , H(A)+ log2 (2p)− h(D)
{ }

Numerical results: In this section, we provide numerical results for the
presented upper bound and compare it with a simulation-based esti-
mation of a lower bound in order to investigate its tightness.
Simulation results are obtained by the method discussed in [9], which
is now briefly recalled. The IR of a given channel can be estimated as

I(X ; Y) ≃ − 1

N
log p(yN1 )+

1

N
log p(yN1 |xN1 ) (9)

where the approximation holds for sufficiently large N. Since the PDFs
required by (9) may not be available in closed-form, we can exploit the
auxiliary channel theorem that allows to estimate upper and lower
bounds on I (X ; Y) [9]. If q(yN1 |xN1 ) is the PDF that describes an auxiliary
channel which approximates the ‘true’ one and
q(yN1 ) =

∑
xN1 [Xn P(xN1 )q(y

N
1 |xN1 ) is the PDF of the output of this auxili-

ary channel, the following limit:

I(X ; Y) = lim
N�+1

− 1

N
log q(yN1 )+

1

N
log q(yN1 |xN1 ) (10)

is a lower bound on the desired IR, i.e. I (X ; Y) ≤ I (X ; Y).
This bound can be estimated by approximating the limit (10) with a

value for sufficiently large N and using the forward recursion of the
Bahl, Cocke, Jelinek, Raviv (BCJR) algorithm to evaluate the required
quantities [9]. As already done in [4–7], the trellis state for the BCJR is
defined as the quantised phase values

fi =
2p

S i i = 0, 1, . . . , S − 1

where S is the number of quantisation levels. The transition probabilities
between states depend on σΔ according to the following expression [7]

P(fm|fj) =
S
2p

∑1
ℓ=−1

∫(p/S)(2j+1)

(p/S)(2j−1)
xmℓ(r)dr (11)

where

xmℓ(r)=Q
(p/S) 2m+1−2ℓS( )−r

sd

( )
−Q

(p/S) 2m−1−2ℓS( )−r

sd

( )

in which Q(·) is the Gaussian tail function.
In the following, we shall consider S = 256 for small constellations,

up to 16-QAM, whereas S = 512 for medium-large constellation sizes,
from 64-QAM on.
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In Fig. 2, the IR is shown, as a function of σΔ, for various QAM
modulation schemes. The presented upper bound (solid lines) is com-
pared with simulation results (dashed lines) relative to the estimated
lower bound (10) at high SNR.

Note that, as predicted by (7), for large values of σΔ the upper bound
approaches the value H(A). Moreover, the proposed bound is tight for
small-medium constellation sizes, e.g. up to 64-QAM, for all considered
values of σΔ. For larger constellation sizes, e.g. 256- or 1024-QAM, the
difference between the upper and lower bounds is more evident for two
reasons. First, the simulation-based lower bound may be loose due to
quantisation noise in the auxiliary channel [4, Fig. 2]. Second, in the
small phase noise region, the upper bound may be loose since, for a
large number of amplitude values L, the bound on the phase component
I(F; C|A) in (6) may not be tight.
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Fig. 2 IR, as function of σΔ, for various QAM modulation schemes at high
SNR

Conclusions and discussion: In this Letter, we derived a simple upper
bound on the IR of phase noise-limited communications. Since the IR
is a non-decreasing function of the SNR, the bound derived assuming
a high-SNR regime is valid for any SNR. The presented upper bound
extends previous literature work valid for PSK modulations to general
linearly modulated signals, such as QAM or APSK schemes.
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