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a b s t r a c t

We consider the massive Multiple Input Multiple Output (MIMO) channel affected by independent
and identically distributed Rayleigh fading, with linear processing at both transmitter and receiver
sides to pursue full diversity, and analyze its outage capacity for large number of antennas. We
first discuss the classical Single Input Multiple Output (SIMO) diversity channel that encompasses
Maximal Ratio Combining (MRC) or Selection Combining (SC). For MRC, a numerical computation
and a Gaussian Approximation (GA) are considered, whereas for SC an exact evaluation is presented.
The analysis is then straightforwardly extended to the Multiple Input Single Output (MISO) diversity
channel that encompasses Maximal Ratio Transmission (MRT) or transmit antenna selection. The
general full diversity MIMO channel is finally considered, with optimal linear processing or simple
antenna selection at both transmitter and receiver. If the number of antennas is sufficiently large
on at least one side, the outage capacity of each considered diversity channel approaches that of a
reference Additive White Gaussian Noise (AWGN) channel with properly defined Signal-to-Noise Ratio
(SNR), which provides a performance benchmark. This conclusion is valid for large but realistic number
of antennas compatible with the assumption of independent fading.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Performance of wireless communication systems may be sig-
ificantly impaired by fading effects, which can be counteracted
y the well-known principle of diversity in time, frequency or
pace [1]. In particular, space diversity can be obtained by means
f sufficiently spaced antennas at the transmitter or receiver, or
oth.
Space diversity is a classic technique that is acquiring further

mportance as a key enabler of modern wireless technology.
iversity techniques can be exploited for improving the per-
ormance of mobile Internet of Things (IoT) systems in fading
nvironments [2]. Massive arrays of antennas are considered in
odern 5G communications and beyond, see, e.g., [3] and ref-
rences therein. Moreover, diversity is considered to fulfill the
equirements of ultra-high reliability within a stringent latency
onstraint [4]. However, large diversity orders may be necessary
or acceptable performance, as shown in [5,6] for Rayleigh fading.

Inspired by these recent contributions, we consider the mas-
ive Multiple Input Multiple Output (MIMO) channel, in which a
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large number of transmit and receive antennas are affected by
independent and identically distributed (i.i.d.) Rayleigh fading.
This model is, for instance, of interest in distributed massive
MIMO systems, in which macrodiversity is achieved by means
of several multi-antenna base stations [7,8]. Using the outage
probability as performance measure, the downlink multi-user
massive MIMO scenario is investigated in [9], whereas the uplink
scenario is investigated in [10,11].

The MIMO channel can be operated at full diversity, i.e., by
employing the multiple antennas to achieve maximum diversity
gain and no multiplexing gain, in agreement with the funda-
mental diversity-multiplexing trade-off [1]. This MIMO diversity
may be especially of interest in applications operating at low
Signal-to-Noise Ratio (SNR), such as in low-rate (e.g., IoT) sys-
tems, where no multiplexing gain can be achieved by multiple
antennas [1]. Another scenario where the massive MIMO diversity
channel may arise is the so-called doubly massive MIMO, where
both transmitter and receiver are equipped with large antenna
arrays [12].

In this paper, we analyze the outage capacity of the MIMO
diversity channel for large number of antennas on at least one
side. The outage capacity is relevant in slow fading channels, in
which the ergodic capacity is not a representative performance
benchmark, as one may not be able to transmit codewords with
arbitrarily small error probability and reasonably large block-
length, due to the non-zero probability that the channel is in
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Fig. 1. MIMO diversity channel with N transmit and M receive antennas. Transmit beamforming and receive linear processing are considered.
N

r
v

eep fade for the entire codeword duration [1]. We provide a
enchmark to the outage capacity of the massive MIMO diversity
hannel in terms of the capacity of the Additive White Gaussian
oise (AWGN) channel operated at a properly defined Signal-to-
oise Ratio (SNR). This benchmark is obtained for asymptotically
igh diversity order and proves useful to characterize the massive
IMO diversity channel for large but realistic diversity orders of
ractical interest.
We first consider the Single Input Multiple Output (SIMO)

hannel that encompasses Maximal Ratio Combining (MRC) or
election Combining (SC). A closed-form expression of the out-
ge capacity of the MRC diversity channel is not available, but
numerical evaluation is provided. A Gaussian Approximation

GA) valid for large number of antennas is also discussed and
ompared. On the other hand, an exact computation of the outage
apacity is possible for the SC diversity channel. This analysis
an be straightforwardly extended to the Multiple Input Single
utput (MISO) channel with either Maximal Ratio Transmission
MRT) [13] or transmit antenna selection, here referred to as
election Transmission (ST).
The general case of the MIMO channel operated at full di-

ersity is finally analyzed. We assume optimal linear processing
t both transmitter and receiver sides in order to achieve the
aximum diversity order equal to the product of the number
f transmit and receive antennas. We also consider the simple
ntenna selection scheme at both transmitter and receiver, here
eferred to as Selection Transmission and Combining (STC).

Our results show that, if the number of antennas is sufficiently
arge, the outage capacity of the diversity channel closely ap-
roaches the benchmark provided by the AWGN channel with
roperly defined SNR, but for a gap, under operational condition
ompatible with the independent fading assumption. Bounds and
symptotic results are also provided for the massive MIMO di-
ersity channel. To the best of our knowledge, we are not aware
f other work in the literature that discusses these bounds and
symptotic results for the outage capacity of the massive MIMO
hannel operated at full diversity.
The structure of this paper is the following. In Section 2, we re-

iew the MIMO, SIMO, and MISO diversity channels. In Section 3,
e derive the outage capacity benchmarks for the considered
cenarios. Numerical results are discussed in Section 4. Finally,
oncluding remarks are given in Section 5.
2

2. MIMO diversity channel

Consider the MIMO diversity channel depicted in Fig. 1. The
encoded and modulated signal s(t) is precoded by the beam-
forming vector ααα = [α1, α2, . . . , αN ]

T and transmitted through
antennas, where the symbol T denotes the transpose operator.

We assume the channel matrixHHH has size M×N and independent
frequency-flat slow fading gains {hij}. At the receiver, the signals
eceived by the M antennas are linearly combined by the receive
ector βββ∗

= [β1, β2, . . . , βM ]
†, where † denotes the Hermitian

transpose operator. The receive antennas are also affected by the
AWGN vector www(t) = [w1(t), w2(t), . . . , wM (t)]T . The combined
signal r(t) is used for demodulation and decoding. The MIMO
diversity channel of interest in this work is the overall channel
from s(t) to r(t).

The received signal can be expressed as

r(t) = βββ†HHH ααα s(t) + n(t) (1)

where n(t) = βββ†www(t) is the noise signal at the output of the
receiver linear processor. The considered MIMO diversity channel
with linear processing has diversity order MN [1].

Among various linear processing schemes in the literature,
we assume ideal Channel State Information (CSI) and focus on
two possible approaches. First, we consider optimal beamforming
and receive combining to maximize the SNR at the output of the
combiner, i.e., the SNR at the input of the demodulator. Assuming
∥ααα∥ = ∥βββ∥ = 1 for signal and noise normalization purposes, it is
well known that the SNR is maximized ifααα andβββ are the principal
right and left singular vectors of HHH , respectively [1]. Under this
assumption, it can be verified that the instantaneous SNR at the
input of the demodulator can be expressed as [1]

γm = ρσ 2
max (2)

where ρ is the SNR on a single unit-gain link and σmax is the
largest singular value of HHH .

Another possible approach, referred to as Selection Transmis-
sion and Combining (STC), selects the transmit–receive antenna
pair which exhibits the maximum instantaneous SNR. The SNR at
the output of the combiner is therefore

γs = max γij (3)

i,j
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here γij is the SNR on the communication link between the jth
transmit antenna, used at full power, and ith receive antenna (j =

, 2, . . . ,N and i = 1, 2, . . . ,M). This approach is described by
he linear processor with beamforming vector ααα and receive com-
iner βββ characterized by just one unitary element each, whereas
ll other elements are zero.
The fading gains are assumed i.i.d. and to follow the Rayleigh

odel. The assumption of independent fading can be justified for
assive antenna arrays of practical interest. As an example, if
e assume that antenna elements are spaced by half wavelength
o observe i.i.d. fading gains and consider a carrier frequency
c = 5 GHz, i.e., a wavelength λ = c/fc = 6 cm, where

= 3 · 108 m/s is the propagation speed, antenna elements
ust be spaced at least by 3 cm for independency. Therefore, a
assive square array of 10 × 10 = 100 antenna elements has
imension of approximately 30 × 30 cm and may be feasible
nd realistic in several applications1 [14]. As other illustrative
xamples in the sub-6 GHz bandwidth, in [15], an antenna array
ith 3 × 6 = 18 elements, of approximate size 10 × 20 cm, is
esigned to operate at 4–4.7 GHz. In [16], the designed antenna
rray has 4×4 = 16 elements, approximate size 10 × 10 cm, and
perates at 5.65 GHz. Due to their limited sizes, both can be used
n low-rate applications, e.g., IoT, to approach a MIMO scenario
ith a few tens of antennas per side.
By direct extension of the results in [17], relative to the clas-

ical SC for the SIMO channel, the average SNR at the output
f the receiver combiner in STC has the following closed-form
xpression for i.i.d. Rayleigh fading

γ s = γ

MN∑
ℓ=1

1
ℓ

(4)

where γ = E{γij} is the average SNR on a single link at full power.
In the next subsections, we discuss the special cases of SIMO

nd MISO channels.

.1. Receive diversity (SIMO)

In the case of a single-antenna transmitter, N = 1, the system
n Fig. 1 collapses into a standard SIMO system with receive diver-
ity and M receive antennas. This scenario may be representative
f uplink communications between single-antenna users and a
ulti-antenna base station.
In this case, ααα = 1 and the optimal linear combination at the

eceiver is MRC, i.e., βββ = hhh/∥hhh∥, where hhh = [h1, h2, . . . , hM ]
T is

he vector of channel coefficients. It is well known that the SNR
t the output of the maximal ratio combiner is [1]

m =

M∑
ℓ=1

γℓ (5)

here γℓ is the SNR on the ℓth receive antenna, i.e., diversity
ranch. Its average value is

γm =

M∑
ℓ=1

γ ℓ (6)

which reduces, for i.i.d. fading, to γm = Mγ , with average branch
NR γ = E{γℓ}.
For N = 1, the STC approach (3) becomes the well-known SC,

.e., the combiner selects the signal of the diversity branch which

1 At this carrier frequency, larger antenna arrays can also be realistic. For
xample, an antenna array with 100 × 100 = 104 elements would have size of
× 3 m and could still be considered feasible for cellular base stations.
3

exhibits the maximum instantaneous SNR. The SNR at the output
of the selection combiner is therefore

γs = max{γ1, γ2, . . . , γM} (7)

and its average has the following closed-form expression for i.i.d.
Rayleigh fading [17]:

γ s = γ

M∑
ℓ=1

1
ℓ
. (8)

2.2. Transmit diversity (MISO)

In the case of a single-antenna receiver, M = 1, the system
in Fig. 1 collapses into a MISO system with transmit diversity
and N transmit antennas. This scenario can be representative of
downlink communications between a multi-antenna base station
and single-antenna users.

In this case, βββ = 1 and the optimal linear processor at the
transmitter is MRT, i.e., the beamforming vector ααα = hhh∗/∥hhh∥.
By similar arguments as for MRC, the SNR at the output of the
combiner can be shown to have a similar formulation as in (5),
i.e.,

γm =

N∑
ℓ=1

γℓ (9)

where γℓ is the SNR received by the ℓth transmit antenna used at
full power [1]. The average value of (9) is

γm =

N∑
ℓ=1

γ ℓ (10)

which reduces, for i.i.d. fading, to γm = Nγ , with γ = E{γℓ}.
For M = 1, the STC approach (3) reduces to the well-known

T, which operates as SC, but at the transmitter side. In particular,
he SNR at the output of the combiner is

s = max{γ1, γ2, . . . , γN} (11)

ith average value for i.i.d. Rayleigh fading:

γ s = γ

N∑
ℓ=1

1
ℓ
. (12)

3. Outage capacity analysis

The outage capacity Cε of a slow fading channel is defined as
the maximum achievable rate such that the outage probability is
less than ε [1].

We define the following function

C(γ ) = log2(1 + γ ) (13)

which describes the capacity per unit bandwidth of the bandlim-
ited AWGN channel operating at SNR γ . The outage capacity per
unit bandwidth can be expressed as [1, Chap. 5]

Cε = C (γ0) = C
(
F−1(ε)

)
b/s/Hz (14)

where γ0 = F−1(ε) is the SNR outage threshold, F (·) is Cumulative
Distribution Function (CDF) of the SNR, and F−1(·) is its inverse.
This expression is valid for the diversity channels considered in
Section 2, provided F (·) is the CDF of the SNR at the input of the
respective demodulator.

In the following, we consider the different scenarios (SIMO,
MISO, MIMO) and derive capacity benchmarks for the resulting
diversity channels in terms of the reference AWGN channel with
suitable values of SNR. We begin with the standard SIMO case
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Fig. 2. Illustrative example of the CDF (15) for γ = 10 dB and various values of
M . Values of γ0 corresponding to an outage probability ε = 0.1 are highlighted.

and, then, extend the results to the other cases. To get insights,
we also concentrate on the high and low SNR regimes, since the
impact of fading may depend very much on the operating regime.
In particular, at high SNR the difference between the outage
capacity of the investigated diversity channel and the capacity of
the relevant reference AWGN one is useful, whereas at low SNR
the ratio between these quantities may be more convenient.

3.1. SIMO

3.1.1. Analysis for MRC
In MRC with i.i.d. branches subject to Rayleigh fading, the SNR

γm in (5) at the output of the combiner has chi-square distribution
with 2M degrees of freedom [1]. Therefore, the outage probability
can be expressed in terms of the CDF of γm in (5) as

ε = F (γ0) = 1 − e−γ0/γ

M−1∑
ℓ=0

1
ℓ!

(
γ0

γ

)ℓ

. (15)

ince (15) does not admit exact inversion, the computation of
he outage capacity CMRC

ε can be pursued numerically, as it is
done in Section 4. An illustrative example of the CDF (15) for
γ = 10 dB and various values of M is shown in Fig. 2. Values of γ0
orresponding to an outage probability ε = 0.1 are highlighted.
In order to get insights in the behavior of the outage capacity

or large M , we consider a GA of the random variable (5) by the
entral limit theorem as γm ∼ N (Mγ ;Mγ 2), where E{γm} = Mγ
nd var{γm} = Mγ 2, as it can be easily verified. Hence, the outage
robability can be approximated as

= F (γ0) ≃ 1 − Q
(

γ0 − Mγ
√
Mγ

)
(16)

where Q (x) is the tail function of a standard Gaussian random
variable. This approximation can be inverted as

γ0 = F−1(ε) ≃ γ

[
M −

√
MQ−1(ε)

]
(17)

here Q−1(·) is the inverse of Q (·) and the symmetry Q−1(1 −

) = −Q−1(ε) is used. Using (17) in (14), one obtains the fol-
owing high-order-diversity approximation of the outage capacity

GA(γ ) = C
(
γ

(
M −

√
MQ−1(ε)

))
b/s/Hz. (18)
ε

4

Since the threshold SNR γ0 ≥ 0, from (17) the condition M ≥

[Q−1(ε)]2 arises. This means that the approximation (18) for the
outage capacity is defined for M ≥ [Q−1(ε)]2. As shown by
the numerical results in Section 4, this condition also affects the
quality of the approximation, as lower values of ε require larger
values of M for similar accuracy.

Considering now a reference AWGN channel at the average
branch SNR γ , the resulting capacity difference can be expressed
as

CGA
ε (γ ) − C(γ ) = log2

1 + γ

[
M −

√
MQ−1(ε)

]
1 + γ

(19)

hich grows unboundedly for increasing values of M and any
ixed values of γ and ε. Note that (19) can become quite large
for practical values of M such that the i.i.d. fading assumption is
still realistic.

By similar arguments, the ratio

CGA
ε (γ )
C(γ )

=

log2
(
1 + γ

[
M −

√
MQ−1(ε)

])
log2 (1 + γ )

(20)

grows unboundedly for increasing values of M and fixed values
of γ and ε.

The growth rate of (19) and (20) can be shown to be loga-
rithmic in the number of antennas. However, a more interesting
viewpoint can be obtained excluding the so-called array gain of
MRC from the analysis [1]. Recall that the array gain is defined
as the SNR gain provided by diversity in the absence of fading,
i.e., when all the branches are affected by AWGN with determin-
istic SNR γ . According to (5), the SNR in MRC and the AWGN
channel is γm = Mγ . Since a similar relation holds for the average
SNR in i.i.d. fading, γm = Mγ , we can exclude the array gain from
the analysis by considering the capacity difference with respect
to the reference AWGN channel with SNR γm. Using γ = γm/M
in (19), we have

CGA
ε (γm) − C(γm) = log2

1 + γm

[
1 −

1
√
M
Q−1(ε)

]
1 + γm

. (21)

or increasing values of M , the term Q−1(ε)/
√
M tends to 0

for any fixed value of ε. Therefore, for high-order diversity, the
(approximate) outage capacity with MRC approaches from below
that of the reference AWGN channel with SNR γm. Hence, the ca-
pacity of this AWGN channel with SNR γm provides a benchmark
to the outage capacity of the massive SIMO diversity channel.

At high SNR specified by the conditions γm ≫ 1 and γm(1 −

1/
√
MQ−1(ε)) ≫ 1, the second terms in the numerator and

denominator of (21) become dominant and, therefore, one can
approximate this capacity gap for high-order diversity as

CGA
ε (γm) − C(γm) ≃ log2

γm

[
1 −

1
√
M
Q−1(ε)

]
γm

≃ log2

[
1 −

1
√
M

Q−1(ε)
]

≃ −
1

√
M

Q−1(ε)
ln 2

(22)

here the second approximation holds because ln(1 + x) ≃ x
or |x| ≪ 1. This gap tends to zero from below as M−1/2 for
ncreasing values of M . Note that the high-SNR condition γm(1−

/
√
MQ−1(ε)) ≫ 1 is well behaved for large M , since if it is

satisfied for some M , it is verified even better for larger values
of M .
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By similar arguments, using γ = γm/M in (20) the capacity
atio

CGA
ε

C(γm)
=

log2
(
1 + γm

[
1 −

1
√
M
Q−1(ε)

])
log2(1 + γm)

(23)

pproaches 1 for increasing values of M . Again, this conclusion
ndicates that C(γm) describes a benchmark to the outage ca-
acity. At low SNR specified by the conditions γm ≪ 1 and

γm(1 − 1/
√
MQ−1(ε)) ≪ 1, the approximate ratio is

CGA
ε (γm)
C(γm)

≃ 1 −
1

√
M

Q−1(ε). (24)

s the low-SNR condition is also well behaved for increasing M ,
we can conclude that the approximation (24) approaches 1 from
below as M−1/2.

3.1.2. Analysis for SC
In SC with i.i.d. branches subject to Rayleigh fading, the outage

probability can be expressed as

ε = F (γ0) =
(
1 − e−γ0/γ

)M
(25)

hich can be inverted as

0 = F−1(ε) = γ ln
1

1 − ε1/M (26)

here F (·) and F−1(·) are now the CDF of the SNR γs in (7) and
ts inverse, respectively. The outage capacity is then expressed in
erms of (13) as

SC
ε (γ ) = C

(
γ ln

1
1 − ε1/M

)
b/s/Hz (27)

nd the difference with respect to that of the reference AWGN
hannel with SNR γ is

SC
ε (γ ) − C(γ ) = log2

1 + γ ln 1
1−ε1/M

1 + γ
(28)

hich grows unboundedly as M increases for any fixed values
f γ and ε. In fact, using the first-order Taylor series expansion
− εx

≃ −x ln ε about x ≃ 0 one has

lim
M→+∞

ln
1

1 − ε1/M = lim
M→+∞

ln
(

M
− ln ε

)
= +∞ (29)

ince − ln ε ≥ 0.
In order to analyze the behavior of (28) for large diversity

order, one can consider a high-SNR regime, i.e., γ ≫ 1 and
γ ln(1/(1− ε1/M )) ≫ 1. Note that, for a given ε, the second high-
SNR condition is better verified for increasing M . The following
approximation, therefore, holds for large M

CSC
ε (γ ) − C(γ ) ≃ log2 ln

1
1 − ε1/M . (30)

his means that the growth is as log2 lnM , hence significantly
lower than MRC.
Unlike MRC, we cannot recognize an array gain in SC due to

he fact that in the absence of fading the SNR at the output of the
ombiner is γ for every M . However, considering the average SNR

γ s in (8), we can identify a gain at the output of the combiner.
Using γ = γ s/(

∑M
ℓ=1 1/ℓ) in (27), the outage capacity for SC can

be expressed as

CSC
ε (γ s) = C

(
1 + γ s

1∑M ln
1

1 − ε1/M

)
. (31)
ℓ=1 1/ℓ

5

Considering the difference with respect to the capacity of the
reference AWGN channel with SNR γ s, we obtain

CSC
ε (γ s) − C(γ s) = log2

1 + γ s
1∑M

ℓ=1 1/ℓ
ln 1

1−ε1/M

1 + γ s
. (32)

As shown below, one has

lim
M→+∞

1∑M
ℓ=1 1/ℓ

ln
1

1 − ε1/M = 1 (33)

and, therefore, the capacity gap CSC
ε (γ s) − C(γ s) approaches zero

from below for large diversity order, i.e., the outage capacity with
SC approaches the benchmark specified by the reference AWGN
channel with SNR γ s. To show (33), the following approximation
of the partial sum of the divergent harmonic series can be used
M∑

ℓ=1

1
ℓ

≃ lnM + k1 + kM (34)

here k1 ≃ 0.57 is the Euler–Mascheroni constant and kM → 0
as M increases [18, Chap. 5]. Using (29) and (34), one has

lim
M→+∞

1∑M
ℓ=1 1/ℓ

ln
1

1 − ε1/M

= lim
M→+∞

1
lnM

ln
(

M
− ln ε

)
= lim

M→+∞

1 −
ln(− ln(ε))

lnM
(35)

= 1.

To analyze the outage capacity for large diversity order, let us
consider a sufficiently large SNR, i.e., γ s ≫ 1 and γ s ln(1/(1 −
1/M )/

∑M
ℓ=1(1/ℓ)) ≫ 1, such that the following approximation

olds

SC
ε (γ s) − C(γ s) ≃ log2

(
1∑M

ℓ=1 1/ℓ
ln

1
1 − ε1/M

)
(36)

or large M , this expression can be approximated using (35) and
the fact that ln(1 + x) ≃ x for |x| ≃ 0 as

CSC
ε (γ s) − C(γ s) ≃

1
ln 2

(
−

ln(− ln ε)
lnM

)
. (37)

sing the same Taylor series expansion used in the derivation of
29), one obtains that CSC

ε (γ s) approaches the benchmark C(γ s)
rom below as lnM . Note that the second high-SNR condition
ehind (36) is also well behaved for increasing M since

γ s
1∑M

ℓ=1 1/ℓ
ln

1
1 − ε1/M  

→1 for M → +∞

≫ 1. (38)

Finally, by similar arguments one can show that the ratio
CSC

ε (γ s)/C(γ s) approaches 1 from below for large values of M . At
ow SNR, a well behaved approximation is

CSC
ε

C(γ s)
≃

1∑M
ℓ=1 1/ℓ

ln
1

1 − ε1/M (39)

which approaches 1 from below as (lnM)−1.

3.2. MISO

Since MRT and ST with N branches in MISO systems are
equivalent to, respectively, MRC and SC with N branches in SIMO
systems as per the results in Sections 2.1 and 2.2, the analysis in
Section 3.1 is also valid here provided M is replaced by N .
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.3. MIMO

The analysis in Section 3.1 can be extended to massive MIMO
cenarios with N transmit and M receive antennas used to pursue
full diversity. In particular, we consider the optimal transmit
beamforming and receive combining described in Section 2. The
analysis for STC is not given, since it is equivalent to those for SC
(in SIMO channels) and ST (in MISO channels) presented in Sec-
tions 3.1 and 3.2, respectively, provided the number of antennas
is MN .

The SNR at the output of the combiner γm in (2) can be upper
and lower bounded as follows. For any realization of the channel
matrix HHH , its largest squared singular value can be upper and
lower bounded by the sum and the average of all the squared
singular values, respectively. In other words

1
RH

RH∑
i=1

σ 2
i ≤ σ 2

max ≤

RH∑
i=1

σ 2
i (40)

here RH is the rank of HHH . Since RH ≤ min{M,N}, a further lower
ound is obtained as

1
min{M,N}

RH∑
i=1

σ 2
i ≤ σ 2

max ≤

RH∑
i=1

σ 2
i . (41)

oreover, it is well known that [19, Chap. 3]
RH

i=1

σ 2
i = ∥HHH∥

2
F (42)

here ∥HHH∥F denotes the Frobenius norm of the channel matrix
H . Using (2) and (41), one finally obtains

ρ

min{M,N}
∥HHH∥

2
F  

γ L
m

≤ γm ≤ ρ ∥HHH∥
2
F  

γU
m

(43)

here the random lower and upper bounds to γm have been
ntroduced as γ L

m and γ U
m , respectively.

The distribution of the SNR γm in (43) is not known, but we
now the distributions of its upper and lower bounds γ U

m and γ L
m,

respectively. First, one should observe that, given two random
variables X and Y such that X ≤ Y for any realizations, their CDFs
are related as FX (x) ≥ FY (x) [20]. Moreover, since γ U

m = ρ∥HHH∥
2
F

and γ L
m = γ U

m/min{M,N}, they have the same distribution of
∥HHH∥

2
F . Recalling that

∥HHH∥
2
F =

M∑
i=1

M∑
j=1

|hij|
2 (44)

he squared Frobenius norm of a random matrix with i.i.d. Gaus-
ian entries is the sum of MN i.i.d. terms with exponential distri-
ution, or equivalently the sum of 2MN squared i.i.d. zero-mean
aussian random variables. This means that, similarly to the MRC
ase in Section 3.1, for i.i.d. Rayleigh fading the distribution of
HHH∥

2
F is chi-square with 2MN degrees of freedom. Therefore,

U
m = ρ∥HHH∥

2
F and γ L

m = γ U
m/min{M,N} have the same distri-

ution but for their mean value parameters, which are discussed
n the following.

To proceed, it is convenient to set up a normalization condition
n the channel matrix HHH by assuming its i.i.d. zero-mean entries
ave unit variance. This normalization does not limit the gener-
lity of the following discussion because all the considered SNRs
cale with this variance accordingly. Under this normalization{

∥HHH∥
2
F

}
=

M∑ N∑
E
{
|hij|

2}
= MN. (45)
i=1 j=1 i

6

Using (43), the average SNR at the input of the demodulator can
be bounded as

ρ max{M,N}  
γ L
m

≤ γm ≤ ρ M N  
γU
m

(46)

here we used the fact that, given two random variables X and
with X ≤ Y for any realizations, their means are related as

E{X} ≤ E{Y } [20] and we have defined the means γ L
m = E{γ L

m}

and γ U
m = E{γ U

m}.
Based on the above setting, we can define lower and upper

bounds on the CDF of the SNR γm, denoted respectively as Fℓ(·)
and Fu(·), as chi-square with 2MN degrees of freedom and average
per-branch SNRs γ U and γ L, respectively defined as

γ U
= ρ (47)

γ L
=

ρ

min{M,N}
. (48)

These CDFs can be expressed by (15) with M replaced by MN
and γ replaced by γ U and γ L, respectively. Hence the outage
probability can be bounded by these CDFs.

We can now bound the outage capacity of the MIMO diversity
channel, using (14), as

CL
ε (γ

L
m) ≤ CMIMO

ε (γm) ≤ CU
ε (γ

U
m) (49)

with

CU
ε (γ

U
m) = C(F−1

ℓ (ε)) = log2
(
1 + F−1

ℓ (ε)
)

(50)

CL
ε (γ

L
m) = C(F−1

u (ε)) = log2
(
1 + F−1

u (ε)
)
. (51)

We can conclude that the outage capacity of the MIMO channel
with full diversity is upper and lower bounded by that of the MRC
SIMO channel with MN antennas and per-branch average SNRs
γ U and γ L, respectively. This implies that the analysis in Sec-
tion 3.1 for MRC allows us to derive the above bounds, provided
the correct diversity order and SNRs are considered.

These bounds may be reasonably tight if min{M,N} is small,
.e., if a large number of antennas is used at one side only, either
ransmitter or receiver. This case may be of interest to extend
he previous analysis of SIMO and MISO channels to a cellular
cenario in which the mobile terminals are equipped with a
mall number of antennas, whereas the base station uses a large
ntenna array. However, for doubly massive channels in which
oth M and N are large, min{M,N} is large and the bounds
ecome loose.
To derive a capacity benchmark useful for the doubly massive

IMO diversity channel, we may resort to the asymptotic results
n [21], which show that the largest squared singular value if M
and N are both large, but their ratio y = M/N is fixed, approaches

σ 2
max → 2(1 +

√
y)2N. (52)

his implies that

γm → ρ 2(1 +
√
y)2N (53)

and, therefore, the outage capacity tends to that of MRC with
2(1 +

√
y)2N antennas.

. Numerical results

We now present numerical results on the analytical frame-
ork presented in Section 3. We consider two representative
alues of high and low outage probabilities, namely ε = 10−1 and
= 10−3, respectively. In Section 4.1, we focus on the high-SNR
egime, where the capacity gap is a representative performance
ndicator, as it describes the gap of the outage capacity of interest
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Fig. 3. Capacity gap with respect to the benchmark C(γm), as a function of M ,
or the SIMO channel with MRC and various (large) values of SNR γm and outage
robability ε. The results obtained by numerical inversion of the SNR CDF are

compared with the GA.

with respect to the proper benchmark capacity of the reference
AWGN channel. In Section 4.2, we discuss the low-SNR regime
where the capacity ratio is of interest, as it provides the outage
capacity of interest in terms of fraction of the capacity of the
suitable benchmark AWGN channel.

4.1. High-SNR analysis

In Fig. 3, the capacity gap with respect to the AWGN channel
ith SNR γm is shown, as a function of M , for the SIMO channel

with MRC and various (large) values of SNR γm and outage
robability ε. The results obtained by numerical inversion of the
NR CDF are compared with the GA. All theoretical predictions are
onfirmed—in particular, the larger the number of antennas, the
loser to zero the capacity gap. It is worth noting the slow con-
ergence of this gap asM−1/2. As expected, the smaller the outage
robability, the worse the performance. Finally, note that for large
alues of M , the GA well predicts the system performance.
In Fig. 4, the capacity gap with respect to the AWGN channel

ith SNR γ s, as a function of M , is shown for the SIMO channel
ith SC and various (large) values of SNR γ s and outage prob-
bility ε. Similar conclusions as in MRC can be drawn for SC.
he curves for increasing value of SNR approach the benchmark
(γ s) as predicted by (36). As M increases, a slow growth can be
bserved. This means that the benchmark can only be approached
or realistic values ofM except for a gap. As an example, consider-
ng ε = 10−3, CSC

ε −C(γ s) ≃ −0.94 b/s/Hz forM = 100. Increasing
M from 100 to 1000 leads to a reduction in the capacity difference
to approximately −0.59. Further increasing M to 10000 leads to
gap of approximately −0.43.
As observed in Section 3.2, the results in Figs. 3 and 4 are also

alid for the MISO channel with MRT and ST with M transmit
ntennas, respectively.
Fig. 5 shows the outage capacity, as a function of the SNR

, for the massive MIMO diversity channel with ε = 10−1 and
arious values of N and M .2 Upper and lower bounds (solid and
ashed lines), benchmarks (marks), and simulation results are
hown. In particular, the AWGN benchmarks are given by the
apacity C(γ L

m) and C(γ U
m), where γ L

m and γ U
m are related to ρ

2 Similar considerations hold for other values of the outage probability.
 t

7

Fig. 4. Capacity gap with respect to the benchmark C(γ s), as a function of M ,
for the SIMO channel with SC and various (large) values of SNR γ s and outage
probability ε.

Fig. 5. Outage capacity, as a function of SNR, for the massive MIMO diversity
channel with ε = 10−1 and various values of N and M . Upper and lower bounds
solid and dashed lines), benchmarks (marks), and simulation results are shown.

s in (46). The limit from [21] is given by the outage capacity of
he MRC channel (computed with the GA since M and N are both
arge) with SNR γm in (53). As one can see, for all the considered
scenarios, upper and lower bounds CU

ε (γ
U
m) and CL

ε (γ
L
m) are close

to the benchmarks C(γ U
m) and C(γ L

m). Moreover, for small values
of N , the bounds are tight and the performance is well predicted.
In the doubly massive case N = M = 100, the bounds are
loose and the outage capacity is also estimated by Monte Carlo
simulations over 106 independent runs. It can be observed that
the performance is well predicted by the asymptotic benchmark
from [21]. Simulations are not provided for the other cases, since
upper and lower bounds are close to each other and predict well
the true performance. These simulations were indeed performed
and found in excellent agreement with the bounds.

4.2. Low-SNR analysis

In Fig. 6, the capacity ratio is shown, as a function of M , for
he SIMO channel with MRC and various (low) values of SNR
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Fig. 6. Capacity ratio, as a function of M , for the SIMO channel with MRC and
arious (low) values of SNR γm and outage probability ε. The results obtained

by numerical inversion of the SNR CDF are compared with the GA.

Fig. 7. Capacity ratio, as a function of M , for the SIMO channel with SC and
arious (low) values of SNR γ s and outage probability ε.

γm and outage probability ε. The results obtained by numerical
inversion of the SNR CDF are compared with the GA. Similar
conclusions as for the capacity gap in Fig. 3 can be drawn. One
should observe that for large values of M , the GA well predicts
the system performance in this case as well. In particular, at low
SNR the capacity ratio based on the GA approaches 1 as M−1/2

or realistic values of M . Note that compared with the reference
value C(γm) the outage capacity is only a fraction and the loss is
ore evident with respect to the high-SNR case of MRC shown in
ig. 3.
In Fig. 7, the capacity ratio is shown, as a function of M , for

he SIMO channel with SC and various (low) values of SNR γ s
nd outage probability ε. As for the capacity gap in Fig. 4, as M

increases, very slow (logarithmic) growth can be observed and
the benchmark cannot be approached in practice. Moreover, the
achievable fraction of the reference capacity is lower than for
MRC, meaning that SC is less effective in the low-SNR regime.
8

Fig. 8. Outage capacity, as a function of SNR, for the massive MIMO diversity
channel with ε = 10−1 and various values of N and M . Upper and lower bounds
solid and dashed lines), benchmarks (marks), and simulation results are shown.

As per Section 3.2, the results in Figs. 6 and 7 are also valid for
he MISO channel with MRT and ST with M transmit antennas,
espectively.

In Fig. 8, the outage capacity in the low SNR regime is shown
or the massive MIMO diversity channel with ε = 10−1 and
arious values of N and M . Upper and lower bounds (solid and
ashed lines), benchmarks (marks), and simulation results are
hown as in Fig. 5. Similar considerations to those in Fig. 5 for
he high-SNR regime are valid for the low-SNR regime.

. Concluding remarks

In this paper, we presented an analysis of the outage ca-
acity for the massive MIMO diversity channel subject to i.i.d.
ayleigh fading. We started from a SIMO channel and presented
numerical solution and a GA for MRC. An exact analysis was
resented for SC. The analysis was also shown to be valid for
he MISO channel with MRT and ST. The analysis was then ex-
ended to the massive MIMO diversity channel, showing that
ts outage capacity can be upper and lower bounded by that of
n MRC system with a proper number of antennas. Moreover,
n asymptotic benchmark was provided for the massive MIMO
iversity channel and confirmed by simulation. Our results show
hat, if the number of antennas is sufficiently large, the outage
apacity of each considered diversity channel approaches that of
he reference AWGN channel with properly defined values of SNR
or large but realistic numbers of antennas.

RediT authorship contribution statement

Marco Martalò: Conceptualization, Investigation, Software,
riting – review & editing. Riccardo Raheli: Conceptualization,
ethodology, Supervision, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.



M. Martalò and R. Raheli Physical Communication 53 (2022) 101683

R
eferences

[1] D. Tse, P. Viswanathan, Fundamentals of Wireless Communication, Cam-
bridge University Press, New York, NY, USA, 2012, http://dx.doi.org/10.
1017/CBO9780511807213.

[2] O.S. Badarneh, M.K. Shawaqfeh, M. Kadoch, Performance analysis of mobile
IoT networks over composite fading channels, in: Proc. Int. Wireless Com-
munications and Mobile Computing, IWCMC, Limassol, Cyprus, 2020, pp.
1234–1239, http://dx.doi.org/10.1109/IWCMC48107.2020.9148477, (held
as virtual).

[3] J. Zhang, E. Björnson, M. Matthaiou, D.W.K. Ng, H. Yang, D.J. Love,
Prospective multiple antenna technologies for beyond 5G, IEEE J. Sel. Areas
Commun. 38 (8) (2020) 1637–1660, http://dx.doi.org/10.1109/JSAC.2020.
3000826.

[4] S.R. Khosravirad, H. Viswanathan, W. Yub, Exploiting diversity for ultra-
reliable and low-latency wireless control, IEEE Trans. Wirel. Commun. 20
(1) (2021) 316–331, http://dx.doi.org/10.1109/TWC.2020.3024741.

[5] P. Popovski, C. Stefanovic, J.J. Nielsen, E. de Carvalho, M. Angjelichinoski,
K.F. Trillingsgaard, A. Bana, Wireless access in ultra-reliable low-latency
communication (URLLC), IEEE Trans. Commun. 67 (8) (2019) 5783–5801,
http://dx.doi.org/10.1109/TCOMM.2019.2914652.

[6] N.A. Johansson, Y..E. Wang, E. Eriksson, M. Hessler, Radio access for ultra-
reliable and low-latency 5G communications, in: Proc. IEEE Intern. Conf.
on Commun., ICC, London, UK, 2015, pp. 1184–1189, http://dx.doi.org/10.
1109/ICCW.2015.7247338.

[7] J. Ding, D. Qu, P. Liu, J. Choi, Machine learning enabled preamble collision
resolution in distributed massive MIMO, IEEE Trans. Commun. 69 (4)
(2021) 2317–2330, http://dx.doi.org/10.1109/TCOMM.2021.3051202.

[8] J. Li, Q. Lv, P. Zhu, D. Wang, J. Wang, X. You, Network-assisted full-duplex
distributed massive MIMO systems with beamforming training based CSI
estimation, IEEE Trans. Wirel. Commun. 20 (4) (2020) 2190–2204, http:
//dx.doi.org/10.1109/TWC.2020.3040044.

[9] C. Feng, Y. Jing, Modified MRT and outage probability analysis for
massive MIMO downlink under per-antenna power constraint, in: IEEE
Int. Workshop on Signal Processing Advances in Wireless Commun.,
SPAWC, Edinburgh, UK, 2016, pp. 1–6, http://dx.doi.org/10.1109/SPAWC.
2016.7536897.

[10] Q. Ding, Y. Jing, Outage probability analysis and resolution profile design
for massive MIMO uplink with mixed-ADC, IEEE Trans. Wirel. Commun.
17 (9) (2018) 6293–6306, http://dx.doi.org/10.1109/TWC.2018.2858242.

[11] C. Feng, Y. Jing, S. Jin, Interference and outage probability analysis for
massive MIMO downlink with MF precoding, IEEE Signal Process. Lett. 23
(3) (2016) 366–370, http://dx.doi.org/10.1109/LSP.2015.2511630.

[12] S. Buzzi, C. D’Andrea, Energy efficiency and asymptotic performance
evaluation of beamforming structures in doubly massive MIMO mmWave
systems, IEEE Trans. Green Commun. Netw. 2 (2) (2018) 385–396, http:
//dx.doi.org/10.1109/TGCN.2018.2800537.

[13] T.K.Y. Lo, Maximum ratio transmission, IEEE Trans. Commun. 47 (10)
(1999) 1458–1461, http://dx.doi.org/10.1109/26.795811.
9

[14] E. Bjornson, L. Sanguinetti, H. Wymeersch, J. Hoydis, T.L. Marzetta, Massive
MIMO is a reality–what is next?: Five promising research directions for
antenna arrays, Elsevier Digit. Signal Proc. 94 (2019) 3–20, http://dx.doi.
org/10.1016/j.dsp.2019.06.007.

[15] M. Temiz, E. Alsusa, L. Danoon, Y. Zhang, On the impact of antenna
array geometry on indoor wideband massive MIMO networks, IEEE Trans.
Antennas Propag. 69 (1) (2021) 406–416, http://dx.doi.org/10.1109/TAP.
2020.3008662.

[16] M. Jordao, D. Belo, N.B. Carvalho, Active antenna array characterization
for massive MIMO 5G scenarios, in: ARFTG Microwave Measurement
Conference, Philadelphia, PA, USA, 2018, pp. 1–4, http://dx.doi.org/10.1109/
ARFTG.2018.8423826.

[17] D.G. Brennan, Linear diversity combining techniques, Proc. IEEE 91 (2)
(2003) 331–356, http://dx.doi.org/10.1109/JPROC.2002.808163.

[18] J. Havil, Gamma: Exploring Euler’s Constant, Princeton University Press,
Princeton, NJ, USA, 2010, http://dx.doi.org/10.1515/9781400832538.

[19] A. Paulraj, R. Nabar, D. Gore, Introduction to Space-Time Wireless
Communications, Cambridge University Press, Cambridge, UK, 2003.

[20] A. Papoulis, Probability, Random Variables and Stochastic Processes,
McGraw-Hill, New York, NY, USA, 1991.

[21] A. Edelman, Eigenvalues and condition numbers of random matrices, SIAM
J. Matrix Anal. Appl. 9 (4) (1988) 543–560, http://dx.doi.org/10.1137/
0609045.

Marco Martalò is an Associate Professor of Telecom-
munications at the University of Cagliari, Italy, which
he joined in 2020 and where he is part of the Networks
for Humans (Net4U) laboratory. From 2012 to 2017, he
was an Assistant Professor with E-Campus University,
Italy, and also a Research Associate with the University
of Parma, Italy, until 2020. He has co-authored the
book ‘‘Sensor Networks with IEEE 802.15.4 Systems:
Distributed Processing, MAC, and Connectivity.’’ His
research interests are in the design of communication
and signal processing algorithms for wireless systems

and networks.

Riccardo Raheli is a Professor of Communication En-
gineering at the University of Parma, Italy, which he
joined in 1991. Previously, he was with the Scuola Su-
periore S. Anna, Pisa, from 1988 to 1991, and Siemens
Telecomunicazioni, Milan, from 1986 to 1988. In 1990
and 1993, he was a Visiting Assistant Professor at the
University of Southern California, Los Angeles, USA.
His scientific interests are in the area of systems for
communication, processing and storage of information,
in which he has published extensively. He has served
as Editorial Board Member and Technical Program

Committee Co-Chair of prestigious international journals and conferences.

http://dx.doi.org/10.1017/CBO9780511807213
http://dx.doi.org/10.1017/CBO9780511807213
http://dx.doi.org/10.1017/CBO9780511807213
http://dx.doi.org/10.1109/IWCMC48107.2020.9148477
http://dx.doi.org/10.1109/JSAC.2020.3000826
http://dx.doi.org/10.1109/JSAC.2020.3000826
http://dx.doi.org/10.1109/JSAC.2020.3000826
http://dx.doi.org/10.1109/TWC.2020.3024741
http://dx.doi.org/10.1109/TCOMM.2019.2914652
http://dx.doi.org/10.1109/ICCW.2015.7247338
http://dx.doi.org/10.1109/ICCW.2015.7247338
http://dx.doi.org/10.1109/ICCW.2015.7247338
http://dx.doi.org/10.1109/TCOMM.2021.3051202
http://dx.doi.org/10.1109/TWC.2020.3040044
http://dx.doi.org/10.1109/TWC.2020.3040044
http://dx.doi.org/10.1109/TWC.2020.3040044
http://dx.doi.org/10.1109/SPAWC.2016.7536897
http://dx.doi.org/10.1109/SPAWC.2016.7536897
http://dx.doi.org/10.1109/SPAWC.2016.7536897
http://dx.doi.org/10.1109/TWC.2018.2858242
http://dx.doi.org/10.1109/LSP.2015.2511630
http://dx.doi.org/10.1109/TGCN.2018.2800537
http://dx.doi.org/10.1109/TGCN.2018.2800537
http://dx.doi.org/10.1109/TGCN.2018.2800537
http://dx.doi.org/10.1109/26.795811
http://dx.doi.org/10.1016/j.dsp.2019.06.007
http://dx.doi.org/10.1016/j.dsp.2019.06.007
http://dx.doi.org/10.1016/j.dsp.2019.06.007
http://dx.doi.org/10.1109/TAP.2020.3008662
http://dx.doi.org/10.1109/TAP.2020.3008662
http://dx.doi.org/10.1109/TAP.2020.3008662
http://dx.doi.org/10.1109/ARFTG.2018.8423826
http://dx.doi.org/10.1109/ARFTG.2018.8423826
http://dx.doi.org/10.1109/ARFTG.2018.8423826
http://dx.doi.org/10.1109/JPROC.2002.808163
http://dx.doi.org/10.1515/9781400832538
http://refhub.elsevier.com/S1874-4907(22)00048-9/sb19
http://refhub.elsevier.com/S1874-4907(22)00048-9/sb19
http://refhub.elsevier.com/S1874-4907(22)00048-9/sb19
http://refhub.elsevier.com/S1874-4907(22)00048-9/sb20
http://refhub.elsevier.com/S1874-4907(22)00048-9/sb20
http://refhub.elsevier.com/S1874-4907(22)00048-9/sb20
http://dx.doi.org/10.1137/0609045
http://dx.doi.org/10.1137/0609045
http://dx.doi.org/10.1137/0609045

	Outage capacity analysis of the massive MIMO diversity channel
	Introduction
	MIMO diversity channel
	Receive diversity (SIMO)
	Transmit diversity (MISO)

	Outage capacity analysis
	SIMO
	Analysis for MRC
	Analysis for SC

	MISO
	MIMO

	Numerical results
	High-SNR analysis
	Low-SNR analysis

	Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	References


