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a b s t r a c t

This paper discusses and analyzes various models of binary correlated sources, which may
be relevant in several distributed communication scenarios. These models are statistically
characterized in terms of joint Probability Mass Function (PMF) and covariance. Closed-
form expressions for the joint entropy of the sources are also overviewed. The asymptotic
entropy rate for very large number of sources is shown to converge to a common limit for
all the consideredmodels. This fact generalizes recent results on the information-theoretic
performance limit of communication schemeswhich exploit the correlation among sources
at the receiver.
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1. Introduction

The efficient transmission of correlated signals, ob-
served at various nodes, to one ormore collectors is ofwide
interest in various scenarios, such as sensor networks [1],
and has been the subject of recent research attention. For
instance, [2] discusses the spatial dependence between
data according to the distribution of the nodes in the mon-
itored area through empirical measurements. The design
of efficient transmission schemes for correlated sources
through orthogonal additivewhiteGaussian noise (AWGN)
channels is a well established topic, see, e.g., [3]. In this
case, the separation between source and channel coding
is optimal and the ultimate performance can be achieved
by means of distributed source coding (DSC) followed by
independent capacity-achieving channel coding [3,4]. An
alternative solution is based on the use of distributed joint
source-channel coding (JSCC),where proper codes are used
to encode the correlated sources. JSCC is based on the use
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of standard channel codes and may represent a practical
and efficient solution. In both cases, knowledge of the sta-
tistical source correlation is exploited at the joint decoder,
whereas source encoding is performed separately [5]. Or-
thogonal multiple access schemes with an arbitrary num-
ber of correlated sources have been recently addressed
in [6]. In this contribution, the asymptotic achievable re-
gion for increasing number of sources has been character-
ized in terms of individual channel capacities, for a specific
correlation model, and pragmatic JSCC schemes have been
proposed.

In this paper, we discuss various correlation models for
an arbitrary number of binary sources, which may be of
interest in several realistic communication scenarios.With
the exception of [6], there are not many papers in the
literature which discuss correlation models for a possibly
large numbers of sources. In [7], the authors proposed
a correlation model based on a set of linear equations
in the binary field. This model is shown to be related,
under special conditions, to one of the binary symmetric
channels (BSC)-based models discussed in this paper. The
main contribution of this paper is twofold. First, we give
a unified overview on the statistical characterization of
such models in terms of joint probability mass function
(PMF), covariance, and joint entropy of the sources. Then,
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we derive the asymptotic entropy rate for large number
of sources and show it is invariant to the considered
model. This implies that the asymptotic achievable region,
recently discussed in [6], which is characterized in terms of
the source entropy rate, can be inferred to be independent
of the specific correlation model and pragmatic joint
source-channel coded schemes may be expected to have
similar asymptotic behavior regardless of the model.

This paper is structured as follows. In Section 2,
we present various binary source correlation models. In
Section 3, we statistically characterize these models, by
deriving the joint PMF of their output sequences and the
corresponding covariancematrices. In Section 4, we statis-
tically characterize these schemes in terms of their joint
entropy. In Section 5, we use the joint entropy rate of these
models to characterize the performance limit of orthogonal
multiple access schemes transmitting correlated symbols.
Finally, concluding remarks are given in Section 6.

2. Source correlation models

Consider N source nodes, possibly spatially distributed,
which output (emit) binary information sequences X =

(X1, X2, . . . , XN)T , where (·)T is the transpose opera-
tion. The binary information symbols are assumed to be
marginally equiprobable, but correlated with each other
according to a given PMF PX (x), in which the N-element
vector x describes a possible realization of X . This sce-
nario may be representative of a sensor network in which
the sensors observe N correlated physical quantities of in-
terest. In Fig. 1, possible correlation models are shown:
(a) parallel, (b) serial, and (c) mixed. In the parallel
model (a), the source symbols are the output of a set of par-
allel BSCs, with cross-over probability 1− ρℓ, for ℓ = 1, 2,
. . . ,N , denoted as BSC(ρℓ), whose input is a hidden com-
mon information bit B. The ℓ-th source symbol is given by

Xℓ = B ⊕ Zℓ (1)

where B is an equiprobable binary random variable, Zℓ are
independent binary random variables with P(Zℓ = 0) =

ρℓ, 1/2 ≤ ρℓ ≤ 1 for ℓ = 1, 2, . . . ,N , and ⊕ denotes
a modulo-2 sum. The random variables B and {Zℓ}

N
ℓ=1 are

independent. Note that the random variables {Zℓ}
N
i=1 and

{Xℓ}
N
i=1 form stochastic processes in the spatial domain.

Obviously, if ρℓ = 0.5 there is no correlation among the
binary information symbols {Xℓ}

N
ℓ=1, whereas if ρℓ = 1

they are identical with probability 1.
The parallel model in (1) can be seen as a special

case of a parallel model with binary asymmetric channels
characterized by two probabilities:

P(Xℓ = 0|B = 0) = ρℓ,0

P(Xℓ = 1|B = 1) = ρℓ,1.

In the network information theory realm, the parallel
model in Fig. 1(a) is a particular instance of the Chief
Executive Problem (CEO) [8]. Note, however, that in the
CEO problem the detection of the hidden source B is of
interest, whereas in this paper we focus on the statistical
characterization of the correlated sources {Xℓ}

N
ℓ=1. The

asymmetric model is representative of wireless sensor
networking with asymmetric false alarm and missed
detection probabilities, see, e.g., [9–11]. In the following,
we focus on the balanced case, but a generalization of
the statistical characterization presented in Sections 3
and 4 for the asymmetric parallel model is provided in
Appendix A.

In Fig. 1(b), a possible serial correlationmodel is shown,
in which the source symbols are correlated by a cascade of
BSCs1 with cross-over probability 1− ρℓ. Again the output
symbols are uncorrelated for ρℓ = 0.5, whereas they are
equal with probability 1 for ρℓ = 1. This model may
arise in multihop relay networks, where a source symbol
is delivered to a final destination through intermediate
relays [12]. However, note that the paper’s focus is on
the correlation structure of the data at the output of the
intermediate BSCs.

A more general ‘‘mixed’’ case with a numberm of serial
branches is shown in Fig. 1(c), in which 1− ρij denotes the
cross-over probability of the ith BSC on the jth branch. In
this case, the correlated data at the ℓ-th, ℓ = 1, 2, . . . ,N ,
source on the jth branch, j = 1, 2, . . . ,M , can be expressed
as

Xℓj = B ⊕

ℓ
i=1

⊕ Zij  
,Z ′

ℓj

= B ⊕ Z ′

ℓj

where the symbol

⊕ denotes modulo-2 sums. The

random variable Z ′

ℓj can be easily characterized by its
distribution [13, Lemma 4.1]

pℓj , P(Z ′

ℓj = 0) =
1
2


1 +

ℓ
i=1

(2ρij − 1)


. (2)

Note that forM = 1, thismixedmodel reduces to the serial
one of Fig. 1(b) and the index j in (2) can be dropped.

A model based on a set of binary linear equations was
considered in [7]:

AX = Z (3)

where A is a binary matrix (whose entries are equal to
either 0 or 1) defining the set of equations and Z =

(Z1, Z2, . . . , ZN)T is a vector of independent Bernoulli
binary random variables with parameters ρℓ = P(Zℓ = 0).
Note that matrix operations are performed in the binary
field.

If A is such that Aℓℓ = 1, Aℓ,ℓ−1 = 1, Aℓk = 0 for
k > ℓ, and ρ1 = 1/2, (3) is equivalent to the serial model
in Fig. 1(b).2 In fact, as a special case, (3) may encompass a
set of recursive equations of the form

min{D,ℓ−1}
i=0

⊕ Aℓ,ℓ−iXℓ−i = Zℓ (4)

1 The first BSC does not play any role in the serial model and could be
omitted—it is kept for notational consistency with the other models.
2 Note that the parallel model (1) cannot be directly described by (3)

since no structure of A can be found. However, the parallel model could
be described by amodified systemAX⊕B = Z , where B is a size-N vector
with all elements equal to B and A = IN , being IN the identity matrix of
size N . Similar considerations hold for the mixed model, which is based
on a combination of parallel and serial models.
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Fig. 1. Considered correlation models: (a) parallel, (b) serial, and (c) mixed.
in which D is the recursion depth, Aℓℓ = 1, Aℓk = 0 or 1 for
k = ℓ − min{D, ℓ − 1}, . . . , ℓ − 1, and Aℓk = 0 for k > ℓ.
Since we are considering binary random variables, (4) can
be also rewritten as

Xℓ =


Zℓ ℓ = 1

Zℓ ⊕

min{D,ℓ−1}
i=1

⊕ Aℓ,ℓ−iXℓ−i ℓ = 2, 3, . . . ,N
(5)

which for D = 1 and ρ1 = 1/2 reduces to the model in
Fig. 1(b). Themodel in (5) describes a recursive binary filter
with input Zℓ and output Xℓ. Note that the recursive model
is characterized by a matrix A with Toeplitz structure.

If the matrix A is invertible in the binary field, then

X = A−1Z (6)

and, therefore, there exists a one-to-one correspondence
between X and Z . A case where the inverse exists is the
recursive model in (4), as it is shown in Appendix B, where
a few cases of interest are also analyzed. For simplicity, in
the rest of the paper we will assume that the matrix A is
invertible. Note that, invertibilitymay lead to uncorrelated
binary sources in the special case ofmatriceswith constant
row weight equal to dc, as shown in [14].
3. Statistical characterization

According to the parallel correlation model (1) in
Fig. 1(a), the joint PMF of the information symbols at the
output of theN nodes can be computed. By straightforward
manipulations, one can show that

PX (x) =


b=0,1

PX (x|B = b)PB(b)

=
1
2


ℓ∈S0

ρℓ


k∈S1

(1 − ρk) +


ℓ∈S0

(1 − ρℓ)

k∈S1

ρk


(7)

where S0 and S1 is a partition of the set {1, 2, . . . ,N}

specifying the positions of zeros and ones in x, respectively.
In the special case of ρℓ = ρ, ℓ = 1, 2, . . . ,N , one obtains

PX (x) =
1
2


ρnz(1 − ρ)N−nz + (1 − ρ)nzρN−nz


(8)

where nz is the number of zeros in x.
In the serial case of Fig. 1(b), using the chain rule, one

has
PX (x) =


b=0,1

PX (x|B = b)PB(b)

=


b=0,1

PB(b)PX1(x1|B = b)
N

ℓ=2

PXℓ
(xℓ|Xℓ−1 = xℓ−1) (9)
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where we have used the fact that, given Xℓ−1, Xℓ is con-
ditionally independent from the previous source symbols
Xℓ−2, . . . , X1 and B. After further simple manipulations,
one can write

PX (x) =
1
2


ℓ∈L0

ρℓ


k∈L1

(1 − ρk)

where L0 and L1 is a partition of the set {2, 3, . . . ,N}

specifying the positions where xℓ = xℓ−1 and xℓ ≠

xℓ−1, respectively. In the special case of ρℓ = ρ, ℓ =

2, 3, . . . ,N , denoting asn′
z the cardinality of the setL0, one

obtains

PX (x) =
1
2
ρn′

z(1 − ρ)N−n′
z−1.

In the general mixed case of Fig. 1(c), let us denote as

XN
1j ,


X1j, . . . , XNj


j = 1, 2, . . . ,M

the set of the N source symbols on the jth branch. One can
generalize the result of the serial case by writing:

PX (x) =


b=0,1

PX (x|B = b)PB(b)

=


b=0,1

M
j=1

PXN
1j
(xN1j|B = b)PB(b)

=


b=0,1

M
j=1

PB(b)PX1j(x1j|B = b)

×

N
ℓ=2

PXℓj(xℓj|Xℓ−1,j = xℓ−1,j)

where, in the second line, we have used the fact that,
conditionally on B, the branches are independent, and the
last line is equivalent to (9) applied to each branch.

Finally, the PMF for correlated sources following the
model in [7] can be characterized, by resorting to (3), as

PX (x) = PZ (Ax). (10)

Using simple manipulations, we have

PX (x) =


ℓ∈S′

0

ρℓ


k∈S′

1

(1 − ρk)

where S′

0 and S′

1 is a partition of the set {1, 2, . . . ,N} spec-
ifying the positions of zeros and ones in Ax, respectively.

The covariance matrix for the considered correlation
models is defined as

CX = RX − µXµ
T
X .

For the parallel and serial models, the elements of the cor-
relation matrix RX and the mean vector µX are, respec-
tively,

Rik = E[XiXk]

µi = E[Xi]
i, k = 1, 2, . . . ,N.

Note that Rik = E[XiXk] = P(Xi = Xk = 1), since
the data are binary. The elements of the vector µX can be
obtained as

µi =
1
2
.

RX depends on the considered correlation model, but in all
cases

Rii = E

X2
i


= 1 · P(Xi = 1) =

1
2

since, for all considered models, P(Xi = 1) = 0.5.
In theparallel case of Fig. 1(a), for i, k = 1, 2, . . . ,N (i ≠

k) one obtains

E[XiXk] =
1
2


b=0,1

P(Xi = Xk = 1|B = b)

=
1
2
[ρiρk + (1 − ρi)(1 − ρk)]

=
1
2
[1 − (ρi + ρk) + 2ρiρk] (11)

which reduces, for ρℓ = ρ, ℓ = 1, 2, . . . ,N , to

E[XiXk] =
1
2


1 − 2ρ + 2ρ2 .

Note that if ρ = 1/2, Cik = 1/4 for i = k and zero
otherwise, i.e., data are uncorrelated.

For the serial correlation model in Fig. 1(b) and i ≠ k,
one can write

P(Xi = Xk = 1) = P(Xk = 1|Xi = 1)P(Xi = 1)

=
1
2
P(Xk = 1|Xi = 1)

where the conditional probability P(Xk = 1|Xi = 1) can be
computed noting that Xi = Xk = 1 if the BSCs of indices
i+ 1, i+ 2, . . . , k flip an even number of times. Therefore,
by arguments similar to those in [13, Lemma4.1]we obtain

P(Xk = 1|Xi = 1) =
1
2


1 +

k
ℓ=i+1

(2ρℓ − 1)


and, therefore,

E[XiXk] =
1
4


1 +

k
ℓ=i+1

(2ρℓ − 1)


. (12)

For the special case of ρℓ = ρ, ℓ = 2, 3, . . . ,N , denoting
the number of hops in the branch of BSCs as L = |i − k|,
(12) reduces to

E[XiXk] =
1
4


1 + (2ρ − 1)L


.

Note that if ρ = 1/2, Cik = 1/4 for i = k and zero
otherwise, i.e., data are uncorrelated.

In the mixed scenario of Fig. 1(c), the covariance matrix
has sizeNM×NM . The element Cik, for i, k = 1, 2, . . . ,NM ,
can be defined as the covariance between the source
symbols Xℓ1m1 and Xℓ2m2 , where

i = (m1 − 1)N + ℓ1 k = (m2 − 1)N + ℓ2.

In particular, the following two cases may occur:

• if m1 = m2, i.e., Xℓ1m1 and Xℓ2m1 belong to the same
branch, the result in (12) can be applied;

• if m1 ≠ m2, i.e., Xℓ1m1 and Xℓ2m2 belong to different
branches, the results for two sources in a parallel
scheme can be applied replacing ρi and ρk in (11) with
pℓ1m1 and pℓ2m2 , respectively, as defined in (2).
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Obviously, it is still verified that, if ρik = ρ = 1/2, Cik =

1/4 for i = k and zero otherwise, i.e., data are uncorrelated.
Finally, the covariancematrix can be also considered for

the correlation model (3) based on a set of binary linear
equations. Using (6), one can write

CX = RX − µXµ
T
X

= E

A−1ZZT (A−1)T


− E


A−1Z


E


ZT (A−1)T


.

Note that the elements of vectors and matrices in the
second line are randomvariableswhich canbe either 0 or 1,
i.e., they are Bernoulli random variables. Since it is known
that themean value of a Bernoulli random variable is equal
to the probability that the random variable itself is equal to
1, one has

CX = P

A−1ZZT (A−1)T = JN


− P


A−1Z = 1N


P


ZT (A−1)T = 1N


where JN is the all-onematrix of sizeN×N , 1N is the all-one
column vector of lengthN , andP (·) denotes element-wise
probability. Note that a closed-form solution for CX is not
readily available as it depends on the particular structure
of A.

An overview of the statistical characterization of the
considered models is summarized in Table 1.

Fig. 2 shows the coefficients of the first row of the
covariance matrix CX for N = 5 sources, ρℓ = ρik = ρ,
and the three models: (a) parallel, (b) serial, and (c) mixed
with M = 2. Two values of ρ are considered: 0.7 (left bars
in each figure) and 0.95 (right bars in each figure). Only the
first row is considered, since for parallel and serial models
with constant ρ the covariance matrix is symmetric and
Toeplitz. In the mixed case, instead, for constant ρ, CX has
the following block Toeplitz structure

CX =


C1 C2 · · · CM

C T
2 C1 · · · CM−1
...

...
...

...

C T
M C T

M−1 · · · C1


where Ci is a Toeplitzmatrix, of sizeN×N , representing the
covariance between sources on branches with separation
i − 1. In other words, zero separation means that the
sources are in the same branch, separation 1 means that
sources are on adjacent branches, and so on. In this case
as well, the first row is sufficient to characterize the
entire matrix. In the figure, one can observe that the first
coefficient is equal to the symbol variance (1/4) in all cases.
Moreover, in the parallel model (a), all coefficients C1k for
k from 2 to 5 are equal due to the fact that the pairwise
probabilities are identical, regardless of the source index.
Note also that the higher the value of ρ, the higher
the covariance elements, since data are more and more
correlated. In the serialmodel (b), the covariance decreases
with k, since a larger number of BSCs is present between
the sources, which become more and more uncorrelated.
In the mixed model (c), recall that indices from k = 1
to k = 5 correspond to the first branch of BSCs, whereas
indices from k = 6 to k = 10 correspond to the second
branch. As expected, symbols in the second branch are less
correlated with the first symbol X11, than those in the first
one at similar depth.
Fig. 2. Coefficients of the first row of the covariance matrix CX for N = 5
sources and three models: (a) parallel, (b) serial, and (c) mixed with
M = 2. Two values of ρ are considered: 0.7 (left bars in each figure) and
0.95 (right bars in each figure).

An alternative view of the covariance matrix is the
histogram of its values shown in Fig. 3 for N = 5 sources
and two models: (a) parallel and (b) serial. Two values of
ρℓ = ρ are considered: 0.7 and 0.95. One can observe that
in the parallel model, only two values of Cik are allowed,
since the pairwise probabilities are the same for any pair
of sources. Moreover, for high correlation (e.g., ρ = 0.95)
larger values than those for small correlation (e.g., ρ =

0.7) are obtained, which is in agreement with the fact that
Cik → 0 for i ≠ k if ρ → 1/2.

4. Source entropy rate

To compute the joint entropy of the N sources for
the considered correlation models, we denote it as
H(XN

1 ), where the notation Xb
a indicates the sequence
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Table 1
Summary of the statistical characterization for all considered models.

Model PMF Covariance

Parallel PX (x) =
1
2


ℓ∈S0

ρℓ


k∈S1

(1 − ρk) +


ℓ∈S0
(1 − ρℓ)


k∈S1

ρk


Cik =


1
4

i = k

1
2


1
2

− (ρi + ρk) + 2ρiρk


i ≠ k

Serial PX (x) =
1
2


ℓ∈L0

ρℓ


k∈L1

(1 − ρk) Cik =


1
4

i = k

1
4

k

ℓ=i+1
(2ρℓ − 1) i ≠ k

Mixed PX (x) =


b=0,1
M

j=1 PB(b)PX1j (x1j|B = b)
N

ℓ=2 PXℓj (xℓj|Xℓ−1,j = xℓ−1,j) Combination of parallel and serial depending on i, k

AX = Z PX (x) =


ℓ∈S′
0
ρℓ


k∈S′

1
(1 − ρk) CX = P


A−1ZZT (A−1)T = JN


−

P

A−1Z = 1N


P


ZT (A−1)T = 1N



Fig. 3. Histogram of the values of the matrix CX for N = 5 sources and
twomodels: (a) parallel and (b) serial. Two values of ρ are considered: 0.7
and 0.95.

(Xa, Xa+1, . . . , Xb), a ≤ b. Let us consider the joint entropy
of XN

1 and B:

H(B, XN
1 ) = H(B) + H(XN

1 |B). (13)

For the parallel model (1) of Fig. 1(a), one has

H(XN
1 |B) =

N
ℓ=1

Hb(ρℓ)

where Hb(ρℓ) is the entropy of a binary random variable
with parameterρℓ. SinceB is a uniformly distributedbinary
random variable, H(B) = Hb(0.5) = 1. Therefore, one
obtains:

H(B, XN
1 ) = 1 +

N
ℓ=1

Hb(ρℓ).
As in (13), it is also possible to write

H(B, XN
1 ) = H(XN

1 ) + H(B|XN
1 ) = 1 +

N
ℓ=1

Hb(ρℓ)

and, therefore,

H(XN
1 ) = 1 +

N
ℓ=1

Hb(ρℓ) − H(B|XN
1 ). (14)

By definition of entropy, the last term is non negative and
the following upper bound (UB) is obtained

H(XN
1 ) ≤ 1 +

N
ℓ=1

Hb(ρℓ). (15)

Moreover, since conditioning reduces entropy [15], it also
follows that

H(B|XN
1 ) ≤ H(B|X1) = Hb(ρ1).

Using this in (14), one obtains the lower bound (LB):

H(XN
1 ) ≥ 1 +

N
ℓ=1

Hb(ρℓ) − Hb(ρ1)

= 1 +

N
ℓ=2

Hb(ρℓ). (16)

Combining (15) and (16) and analyzing the limit for large
number of sources, one obtains

lim
N→+∞

H(XN
1 )

N
= Hb (17)

where

Hb , lim
N→+∞

1
N

N
ℓ=1

Hb(ρℓ)

in which the limit exists since 0 ≤ Hb(ρℓ) ≤ 1. This
quantity can be interpreted as the limit average entropy
of the cascade of N BSCs and (17) can be interpreted as the
asymptotic entropy rate of the correlated sources, namely
the limit average source entropy. Eq. (17) reduces, for the
special case ρℓ = ρ, ℓ = 1, 2, . . . ,N , to

Hb = lim
N→+∞

1
N

N
ℓ=1

Hb(ρℓ) = Hb(ρ).
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This result can be also obtained by observing that XN
1 is a

stationary binary random process, whose entropy rate is
well-known [15, Ch. 4]. This limit for the special case of
constant ρ has been also derived in [6].

Consider now the joint entropy of the serial correlated
source model in Fig. 1(b). Using the chain rule for entropy,
one can easily compute the joint entropy as

H(XN
1 ) = H(X1) +

N
ℓ=2

H(Xℓ|Xℓ−1
1 )

= H(X1) +

N
ℓ=2

H(Xℓ|Xℓ−1)

= 1 +

N
ℓ=2

Hb(ρℓ). (18)

Analyzing the limit for large number of sources, one
obtains

lim
N→+∞

H(XN
1 )

N
= Hb (19)

and in the special case of ρℓ = ρ, ℓ = 2, 3, . . . ,N:

Hb = lim
N→+∞

1
N


1 +

N
ℓ=2

Hb(ρℓ)


= Hb(ρ).

Note that the parallel and serial models have equal
asymptotic source entropy rate for any given sequence
{ρℓ}

N
ℓ=1.
In the general mixed case of Fig. 1(c), it can be shown

(see Appendix C for the proof) that

lim
N→+∞

H(XN
11, . . . , X

N
1M)

MN
= Hb (20)

where

Hb , lim
N→+∞

1
MN

M
j=1

N
ℓ=1

Hb(ρℓj).

We remark that the limit exists since each term in
the summation is limited to the interval [0, 1]. Eq. (20)
reduces, for the special case of ρℓj = ρ, ℓ = 1, 2, . . . ,N
and j = 1, 2, . . . ,M , to

Hb = lim
N→+∞

1
MN

M
j=1

N
ℓ=1

Hb(ρ) = Hb(ρ).

Note that similar considerations can be also carried out if
N is kept fixed and M grows to infinity or if both N and M
become arbitrarily large.

We finally analyze the entropy rate of the source
correlation model given by a set of linear equations in (3).
Using (10) and the assumption of invertibility of A, it can
be easily shown that [15]

H(XN
1 ) = H(ZN

1 ) =

N
ℓ=1

Hb(ρℓ).

Therefore:

lim
N→+∞

H(XN
1 )

N
= Hb
which reduces, for the special case of ρℓ = ρ, ℓ =

1, 2, . . . ,N , to

Hb = lim
N→+∞

1
N

N
ℓ=1

Hb(ρℓ) = Hb(ρ).

This shows that the source entropy rate is asymptotically
the same for the linear equation-based correlation model
as well, hence for all the considered correlation models.

The convergence of the entropy rates of the considered
models can be analyzed in terms of the difference between
the average source entropy for finite N and the asymptotic
value. In particular, in the parallel and serial models we
define

ϵ ,
H(XN

1 )

N
− Hb.

In themixedmodel, instead, this difference is also function
ofM and can be defined as

ϵ ,
H(XN

11, . . . , X
N
1M)

MN
− Hb.

In Fig. 4, bounds on ϵ are shown, as functions of N , for
parallel or serial models and two values of ρ (assumed
equal for all BSCs): 0.7 and 0.95. Note that lower and
upper bounds on ϵ can be obtained using the LB and UB
on the joint entropy for the parallel model, respectively.
In particular the LB for the parallel case and the exact
value of ϵ for the serial model are identical, due to the
fact that the right-hand side of (16) and (18) coincide for
any N in the special case of constant ρ. Moreover, the UB
on ϵ for the parallel model is the same, regardless of the
value of ρ, and the curves overlap for both values of ρ.
In both cases, ϵ converges to zero as 1/N .3 Furthermore,
the tightness of the bounds increases with the number of
correlated sources, since UB and LB become closer to each
other. However, the convergence of the LB degrades with
increasing values of ρ. Moreover, the mixed model has the
same trend for ϵ, since it decreases with 1/(MN) for any
fixed value of M .

In Fig. 5, bounds on ϵ are shown, as functions of M , for
the mixed model, two values of ρ (namely, 0.7 and 0.95),
and two values of N (namely, 10 and 50). Note that similar
considerations as those relative to Fig. 4 hold in this case
for fixed values of N and lettingM go to infinity.

5. Transmission of correlated symbols in orthogonal
multiple access schemes

The statistical characterization of the correlation mod-
els can be useful in the design and performance analysis
of orthogonal multiple access schemes with correlated
sources. In these schemes, each node independently en-
codes, by a joint source-channel code with rate r , the
source symbols and transmits them through an orthogo-
nal multiple access channel. At the receiver side, data are

3 This convergence rate can be also obtained for the model given by a
set of linear equations when A is such that this model is equivalent to the
serial one.
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Fig. 4. Bounds on ϵ, as functions of N , for parallel (par), serial (ser), and
mixed (mix) (M = 2) models and two values of ρ: 0.7 and 0.95.

Fig. 5. Bounds on ϵ, as functions of M , for the mixed model, two values
of ρ (namely, 0.7 and 0.95), and two values of N (namely, 10 and 50).

decoded by properly taking into account the source corre-
lation to improve the overall system performance.

In this scenario, the source PMF is helpful to design
proper iterative receivers, as shown in [6]. The computa-
tion of the source entropy rate discussed in Section 4 plays,
instead, an important role in determining the asymptotic
achievable region of orthogonal multiple access schemes
with correlated sources. In the following, we will shortly
discuss the impact of the correlation model on the achiev-
able region of orthogonal multiple access schemes.

Recent work in [6] has proposed a characterization
of the achievable region of orthogonal multiple access
schemes with correlated sources, based on the computa-
tion of joint and conditional entropies of the sources, for an
arbitrary value ofN . According to [6], the achievable region,
in the space of individual channel capacity values {λℓ}

N
ℓ=1,

is specified by the intersection of the following inequali-
ties:
ℓ∈S

λℓ ≥ r H(X(S)|X(Sc)) (21)

for all S ⊆ {1, 2, . . . ,N}, in which X(S) = {Xi :

i ∈ S} and Sc denotes the complementary set of S.
Note that H(X(S)|X(Sc)) is the conditional entropy of the
sources with index in S given the remaining ones. Two
characteristic operational points, denoted as ‘‘balanced’’
and ‘‘unbalanced,’’ are of interest.

The balanced characteristic point refers to the case
where all source symbols are transmitted at a rate equal
to the same single-channel capacity, i.e., λbal = λ1 = λ2 =

· · · = λN . This common value, is equal to

λbal , r
H(XN

1 )

N
. (22)

The unbalanced case, instead, refers to the portion of the
achievable region characterized as follows: N − 1 sources,
e.g., sources from1 toN−1, are associatedwith sufficiently
large values of λi, i = 1, 2, . . . ,N − 1. In this case, λunb is
the smallest value of λN such that the operational point lies
on the border of the achievable region and it is equal to

λunb , rH(XN |XN−1
1 ). (23)

In [6], it is shown that for the parallel model in Fig. 1(a)
and ρℓ = ρ, ℓ = 1, 2, . . . ,N , the following facts hold

λbal ≥ λunb ∀N

lim
N→+∞

λunb = lim
N→+∞

λbal , λlim = rHb(ρ). (24)

This characterization of the achievable orthogonalmultiple
access region is simple but effective. In particular, (24)
tells us that, when N increases, the achievable region
tends to a hyperoctant and the system operational points
become equal. Therefore, one can devise joint source-
channel coded schemes for any of these operational
points, since they guarantee the same achievable rate of
other operational points for a sufficiently large number
of sources. Hence, code design can be based on the
most convenient operational point, e.g., the one which
guarantees less complexity.

A natural question, not discussed in [6], is the following:
are these results dependent on the considered correlation
model? In general, the entropy of the binary sources
may depend on the model considered for correlation.
However, we have shown in Section 4 that the asymptotic
entropy rate is the same for all the considered models.
We can, therefore, conclude that the achievable region
of orthogonal multiple access schemes is asymptotically
invariant to the considered correlation model as the
number of sources increases. Moreover, from Figs. 4 and 5
it can be observed that the convergence trend is the same
for all considered models. Hence, it may be expected that
joint source-channel coding schemes devised for one of
thesemodels (see, e.g., the turbo codes considered in [6] for
the parallel model) have similar asymptotic performance
for the other models as the number of sources increases.

6. Conclusions

In this paper, we have discussed and analyzed a
few binary source correlation models. In particular, we
have statistically characterized these models, in terms of
joint PMF, covariance, and joint entropy of the source
correlated sequence. Moreover, we have computed the
asymptotic entropy rate for large number of sources,
showing that a commonvalue is obtained for all considered
models. This result generalizes [6], because the asymptotic
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achievable region of orthogonal multiple access schemes
for large numbers of sources is shown to be invariant
to the considered correlation model. Therefore, one can
conjecture that joint source-channel coding schemes,
which exploit the correlation at the receiver, may be
expected to have similar asymptotic behavior regardless of
the model.
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Appendix A. Statistical characterization of a parallel
model with asymmetric probabilities

In this Appendix, we present a generalization of
the statistical characterization for a parallel model in
which the correlated symbols are generated using binary
asymmetric channels. In this scenario, the information
data at the ℓ-th source, ℓ = 1, 2, . . . ,N is still given by
Xℓ = B ⊕ Zℓ with

P(Xℓ = 0|B = 0) = ρℓ,0

P(Xℓ = 1|B = 1) = ρℓ,1.

Note that for ρℓ,0 = ρℓ,1, ℓ = 1, 2, . . . ,N , the deriva-
tion for the symmetric scenario can be obtained. In this
asymmetric case, the source symbols are in general not
equiprobable. In fact:

P(Xℓ = 0) =


b=0,1

P(Xℓ = 0|B = b)P(B = b)

=
1
2
ρℓ,0 +

1
2
(1 − ρℓ,1)

=
1
2


1 + ρℓ,0 − ρℓ,1


and, similarly,

P(Xℓ = 1) = 1 − P(Xℓ = 0) =
1
2


1 + ρℓ,1 − ρℓ,0


.

As in (7), the source PMF can be expressed as

PX (x) =


b=0,1

PX (x|B = b)PB(b)

=
1
2


ℓ∈S0

ρℓ,0


k∈S1

(1 − ρk,0) +


ℓ∈S0

(1 − ρℓ,1)

k∈S1

ρk1


.

In order to derive the covariance matrix, one has to
determine the following quantities:

µi = E[Xi]

Rik = E[XiXk].

Since {Xi} are i.i.d. Bernoulli random variables,

µi = 1 · P(Xi = 1) =
1
2


1 + ρi,1 − ρi,0


.

The elements of the correlation matrix, instead, can be
obtained as follows. For i = k, one has

Rii = E[X2
i ] = 1 · P(Xi = 1) = µi
whereas, for i ≠ k,

Rik = 1 · P(Xi = Xk = 1)

=
1
2


b=0,1

P(Xi = Xk = 1|B = b)

=
1
2


ρi,1ρk,1 + (1 − ρi,1)(1 − ρk,1)


.

Finally, the joint entropy of theN sources can be derived
using the approach in Section 4. In particular, it can be
observed that

H(Xℓ|B) =
1
2


Hb(ρℓ,0) + Hb(ρℓ,1)


.

Therefore, the entropy rate for large number of sources is

lim
N→+∞

H(XN
1 )

N
= Hb

where

Hb , lim
N→+∞

1
2N

N
ℓ=1


Hb(ρℓ,0) + Hb(ρℓ,1)


.

Since the joint PMF, the matrix covariance, and source
entropy rate have the same structure of the symmetric
model in Fig. 1(a), the conclusions drawn for the symmetric
case can be extended to the asymmetric one. All the results,
in terms of joint PMF, covariance, and source entropy rate,
for the parallelmodel in Fig. 1(a) can be obtained by setting
ρℓ,0 = ρℓ,1 = ρℓ, ℓ = 1, 2, . . . ,N in the above equations.

Appendix B. Existence of the inverse matrix in the
linear correlation model (3)

The derivations for the model (3) are based on the
assumption of invertibility of matrix A. We now present
a few special cases of matrix A in (3) where the inverse
matrix exists. In particular, we consider two main classes:
(i) matrices associated with the recursive model in (4) and
(ii) circulant matrices. To show the invertibility of these
matrices, we can prove that their determinants are non-
zero in the binary field.

The coefficients of A for the recursive model in (4) are
the following:

Aℓk =

1 for k = ℓ
0 or 1 for k = ℓ − min{D, ℓ − 1}, . . . , ℓ − 1
0 otherwise

for ℓ, k = 1, 2, . . . ,N . Thismeans that the recursivemodel
is characterized by a ToeplitzmatrixA. It is known that, out
of all the size-N Toeplitz matrices over a finite field of q
elements, a fraction 1 − 1/q (i.e., 1/2 in our binary case) is
non-singular [16]. The considered matrix associated with
the recursive model (4) is also lower triangular with equal
elements on the main diagonal, since Aℓk = 0 for ℓ < k.
Therefore, the determinant can be written as [17]:

detA =

N
ℓ=1

Aℓℓ = 1.

This proves that the inverse matrix exists for this case.
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Consider now circulant matrices and restrict to those
matriceswith coefficients, for ℓ = 1, 2, . . . ,N , of the form:

Aℓk =


1 for k = ℓ, ℓ + 1, . . . , ℓ + d − 1 mod N
0 otherwise

where d is such that d consecutive matrix coefficients are
equal to 1 and the remaining ones are equal to zero. The
mod N operation is needed to perform the circular shift of
the rows. The determinant is known if d is a prime [17]:

detA =


0 if d | N
d mod 2 otherwise

where the notation d | N means that ddividesN . Therefore,
circulantmatrices admit an inverse if d is an odd prime (i.e.,
d ≠ 2) and does not divide N .

Note that the circulant case can be shown to be
equivalent to the serial model of Fig. 1(b) for d = 1 and
ρ1 = 1/2. As an example, consider the case N = 5, for
which the correlation matrix A is such that the following
system of equations can be written:

X1 = Z1
X2 ⊕ X3 = Z2
X3 ⊕ X4 = Z3
X4 ⊕ X5 = Z4
X1 ⊕ X5 = Z5.

This leads to amodel similar to that in Fig. 1(b) with proper
rearranging of the cascade of BSCs.

Appendix C. Asymptotic entropy rate of the mixed
correlation model

Let us consider the joint entropy of XN
1j and B:

H(B, XN
11, . . . , X

N
1M) = H(B) + H(XN

11, . . . , X
N
1M |B). (25)

Given B, the set XN
1j is independent of XN

1k for j ≠ k and,
therefore,

H(XN
11, . . . , X

N
1M |B) =

M
j=1

H(XN
1j |B) =

M
j=1

N
ℓ=1

Hb(ρℓj).

Noting again that B is a uniformly distributed binary
random variable with H(B) = Hb(0.5) = 1, one obtains:

H(B, XN
11, . . . , X

N
1M) = 1 +

M
j=1

N
ℓ=1

Hb(ρℓj).

As in (25), it is also possible to write

1 +

M
j=1

N
ℓ=1

Hb(ρℓj) = H(B, XN
11, . . . , X

N
1M)

= H(XN
11, . . . , X

N
1M) + H(B|XN

11, . . . , X
N
1M)

and, therefore,

H(XN
11, . . . , X

N
1M) = 1 +

M
j=1

N
ℓ=1

Hb(ρℓj)

−H(B|XN
11, . . . , X

N
1M). (26)
Since by definition of entropy the last term is non negative,
the following UB results

H(XN
11, . . . , X

N
1M) ≤ 1 +

M
j=1

N
ℓ=1

Hb(ρℓj). (27)

Moreover, since conditioning reduces entropy [15], it also
follows that
H(B|XN

11, . . . , X
N
1M) ≤ H(B|X11) = Hb(ρ11).

Using this in (26), one obtains the LB:

H(XN
11, . . . , X

N
1M) ≥ 1 +

M
j=1

N
ℓ=1

Hb(ρℓj) − Hb(ρ11). (28)

Combining (27) and (28), one obtains the limit in (20).
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