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A Simple Information-Theoretic Analysis of
Clustered Sensor Networks with Decentralized Detection
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Abstract—In this letter, we present a simple information-
theoretic framework to analyze clustered sensor networks with
hierarchical multi-level majority-like fusion and decentralized
detection. The sensor nodes observe a binary phenomenon and
transmit their own data to an access point (AP), possibly through
intermediate fusion centers (FCs). We investigate the impact of
uniform and non-uniform clustering on the system performance,
evaluated in terms of mutual information between the true
phenomenon status and its estimate at the AP. Being the overall
system binary-input binary-output (BIBO), it will be shown that
the probability of decision error (𝑃e) is a specific function of the
input-output mutual information (𝐼). In other words, the network
operational point lies over a specific 𝑃e − 𝐼 curve and depends
on the network characteristics (e.g., topology, observation and
communication noise levels, etc.).

Index Terms—Clustered sensor networks, decentralized de-
tection, noisy communication links, information-theoretic frame-
work.

I. INTRODUCTION AND MOTIVATION

D ISTRIBUTED detection has been an active research field
for a long time [1]. The increasing interest for sensor

networks has spurred a significant activity on the design
of efficient distributed detection techniques [2]. Information-
theoretic approaches have also been proposed for the study
of sensor networks with decentralized detection. In [3], the
authors propose a framework to characterize a sensor network
in terms of its entropy and false alarm/missed detection
probabilities. In [4], the mutual information is evaluated in
a scenario with censoring sensors which transmit their local
likelihood ratios, by maximizing the probability of correct
decision.

In this letter, we consider a sensor networking scenario
where the information collected by a sensor can be transferred
to the access point (AP) through multiple hops, i.e., by exploit-
ing intermediate nodes as relays. Besides the need to support
multiple communications, in several scenarios the information
received by a relay from sensors placed in a specific region
might be redundant. In this case, the relay does not need to
forward the information received by all sensors, but can extract
a concise “picture” of the status of the monitored scenario.

In order to carry out the analysis outlined in the previous
paragraph, we consider network scenarios where sensors,
which observe a binary phenomenon, are grouped into clusters
and are directly connected with local fusion centers (FCs)
(one per cluster), denoted as first-level FCs. We assume
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Fig. 1. Basic structures for sensor networks with decentralized detection.
Three cases are shown: (a) absence of clustering, (b) uniform clustering with
two levels of information fusion, and (c) uniform clustering with three levels
of information fusion.

that the observed phenomenon is spatially constant. This is
meaningful, for example, when it is of interest to detect if the
phenomenon under observation (e.g., temperature, humidity,
pressure) overcomes a critical threshold. Each first-level FC
makes a local decision based on the data collected from its
associated sensors and then transmits its decision to the AP,
possibly through other intermediate FCs.

While a communication-theoretic framework is presented
in [5], the goal of the current letter is to derive a simple,
yet insightful, information-theoretic perspective on clustered
sensor networks with decentralized detection. This is carried
out by modelling the entire network as a binary-input binary-
output (BIBO) system, where the binary input is the observed
phenomenon and the binary output is its estimate at the AP.
The key metric in this analysis is the mutual information
between the true status of the phenomenon under observation
and its estimate at the AP. As it will be shown, its value
determines the probability of decision error at the AP. While
clustered architectures are inherently scalable and allow to
manage a very large number of sensors, our information-
theoretic framework is expedient to concisely investigate (i)
the impact of the specific clustered topologies (either uniform
or non-uniform) and (ii) the cost, in terms of observation
accuracy at the sensors and robustness against communication
noise, of multi-level information fusion algorithms.

II. PRELIMINARIES

The reference scenario is shown in Fig. 1 for three possible
networking schemes: (a) no clustering, (b) two decision level
uniform clustering,1 and (c) three decision level uniform clus-
tering. Note that topologies (b) and (c) can be easily extended
to scenarios with non-uniform clustering, i.e., scenarios where
the cluster size may vary from cluster to cluster. In the
following, the clustered configurations will be denoted by

1By uniform clustering, we mean that the number of nodes per cluster is
the same among all clusters.
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using the number of sensors in each cluster. For instance, if
a cluster contains 14 sensors and other two clusters contain 1
sensor each, the configuration will be denoted as 14-1-1.

We consider a network scenario where 𝑁 sensors observe,
in a noisy manner, a common binary phenomenon whose status
is defined as follows:

𝐻 =

{
𝐻0 with probability 𝑝0
𝐻1 with probability 1− 𝑝0

where 𝑝0 ≜ 𝑃 (𝐻 = 𝐻0). The sensors are clustered into
𝑛c < 𝑁 groups, and each sensor can communicate only
with its local first-level FC. The first-level FCs collect data
from the sensors in their corresponding clusters and make
local decisions on the status of the binary phenomenon. In a
scenario with two levels of information fusion, each local FC
transmits to the AP, which makes the final decision, denoted
as �̂� .

According to the approach followed in [5], a com-
mon signal-to-noise ratio (SNR) at the sensors, denoted as
SNRsensor, can be defined. The 𝑖-th sensor (𝑖 = 1, . . . , 𝑁 )
makes a decision comparing its observation 𝑟𝑖 with a threshold
value 𝜏𝑖 and computes a local decision 𝑢𝑖 = 𝑈(𝑟𝑖 − 𝜏𝑖),
where 𝑈(⋅) is the unit step function. In the following, we
assume that all sensors use the same decision threshold 𝜏
and its value will be optimized in all considered scenarios,
by minimizing the probability of decision error at the AP. In
particular, the optimized value of the common threshold is
around

√
SNRsensor/2 [5].

In a scenario with noisy communication links, modeled as
binary symmetric channels (BSCs), the decision 𝑢𝑖 sent by
the 𝑖-th sensor can be flipped with a probability corresponding
to the cross-over probability of the BSC model and denoted
as 𝑝 [5]. The received bit at the fusion point (either an FC
for clustered networks or directly the AP in the absence of
clustering), referred to as 𝑢

(r)
𝑖 , can be expressed as

𝑢
(r)
𝑖 =

{
𝑢𝑖 with probability 1− 𝑝
1− 𝑢𝑖 with probability 𝑝.

The probability of decision error at the AP is defined as

𝑃e ≜ 𝑝0𝑃
(
�̂� = 𝐻1∣𝐻0

)
+ (1− 𝑝0)𝑃

(
�̂� = 𝐻0∣𝐻1

)
. (1)

In [5], it is shown how to numerically evaluate (1) and the
behavior of 𝑃e is investigated for many clustering configura-
tions.

III. JOINT COMMUNICATION/INFORMATION-THEORETIC

CHARACTERIZATION

The considered sensor network schemes can be modeled as
“black boxes” with a binary input (the phenomenon 𝐻) and
a binary output (the decision �̂� at the AP). Using the model
introduced in Section II, the final decision �̂� can be described
as a binary random variable characterized by the parameter2

𝑝0 ≜ 𝑃 (�̂� = 𝐻0), which can be rewritten as

𝑝0 = 𝑝0𝑃
(
�̂� = 𝐻0∣𝐻0

)
+ (1− 𝑝0)𝑃

(
�̂� = 𝐻0∣𝐻1

)
. (2)

2Note that 𝑝0 ≜ 𝑃 ( ˆ𝐻 = 𝐻0) (relative to the decision ˆ𝐻) is different
from the a priori probability of the phenomenon 𝑝0 ≜ 𝑃 (𝐻 = 𝐻0) given
in Section II.
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Fig. 2. Probability of decision error, as a function of the mutual information.
The operational points for various clustering configurations and two sensor
SNRs are shown.

We remark that equation (2) may look identical to (1). In (2),
however, the first term at the right-hand side contains 𝑃 (�̂� =
𝐻0∣𝐻0), whereas in (1) it contains 𝑃 (�̂� = 𝐻1∣𝐻0). The value
of 𝑝0 given by (2) embeds all network characteristics (namely,
the topology, the sensor SNR, and the level of communication
noise) which determine the expression of �̂� .

The binary entropy of the random variable �̂� is [6]

ℋe(�̂�) = ℋe (𝑝0) ≜ 𝑝0 log2
1

𝑝0
+ (1 − 𝑝0) log2

1

1− 𝑝0
.

The mutual information of the BIBO sensor network, de-
noted as 𝐼(𝐻 ; �̂�), can then be written as [6, ch. 2]

𝐼(𝐻 ; �̂�) = ℋe(�̂�)−ℋe(�̂� ∣𝐻)

where ℋe(�̂� ∣𝐻) is the conditional entropy of �̂� given 𝐻 and
can be written as

ℋe(�̂� ∣𝐻) = 𝑃 (�̂� = 𝐻0∣𝐻) log2
1

𝑃 (�̂� = 𝐻0∣𝐻)

+𝑃 (�̂� = 𝐻1∣𝐻) log2
1

𝑃 (�̂� = 𝐻1∣𝐻)
.

After a few manipulations, the mutual information becomes

𝐼(𝐻 ; �̂�) = ℋe (𝑝0(1− 𝑝10) + (1− 𝑝0)𝑝01)

−𝑝0ℋe(𝑝10)− (1− 𝑝0)ℋe(𝑝01) (3)

where 𝑝𝑖𝑗 ≜ 𝑃 (�̂� = 𝐻𝑖∣𝐻𝑗), 𝑖, 𝑗 ∈ {0, 1}, 𝑖 ∕= 𝑗, are
the component conditional probabilities in (1). Note that 𝐼
is then a function of the sensor SNR. Therefore, 𝑃e can be
investigated as a parameterized (in SNRsensor) function of 𝐼 .

Although all the results presented in the following are
obtained in a scenario with 𝑁 = 16 sensors and 𝑝0 = 0.5
(binary phenomenon with equally likely outcomes), the same
framework can be directly applied with other values of 𝑁 and
𝑝0. In Fig. 2, the probability of decision error is shown, as a
function of the mutual information, for the following topolo-
gies: no clustering (circles), uniform clustering (triangles),
and non-uniform clustering (pluses, 14-1-1 configuration).
The communication links are ideal. As one can see, the
operational points associated with different network topologies
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Fig. 3. Mutual information, as a function of the sensor SNR, in a sensor
network with uniform clustering and noisy communication links with two
possible values of the cross-over probability: (i) 𝑝 = 0.01 (solid lines) and
(ii) 𝑝 = 0.05 (dashed lines).
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Fig. 4. Probability of decision error, as a function of the mutual information,
in a scenario with uniform clustering and noisy communication links (𝑝 =
0.05). The limiting (SNRsensor → ∞) operational point with various number
of decision levels are shown.

lie on the same curve. In other words, for a given value
of the mutual information, the probability of decision error
is fixed. In particular, for a given network topology, the
position of the network operational point over the curve in
Fig. 2 is associated with a specific sensor SNR. However,
the same sensor SNR corresponds to different values of the
mutual information in clustered and non-clustered scenarios—
in Fig. 2, a few representative points, associated with two
sensor SNRs, are indicated. As one can see, for a given sensor
SNR, the mutual information is highest (and the probability
of decision error lowest) with no clustering and the loss with
non-uniform clustering is higher than with uniform clustering.
Similar curves can be derived for other scenarios, e.g., for a
large number of sensors, with more than two decision levels,
and in the presence of noisy communication links between
sensors and first-level FCs, as will be shown in the following
(Fig. 4). In all cases, the information-theoretic characterization
of the network behavior does not change: for a fixed value of
the mutual information, the probability of decision error is
uniquely determined.

In Fig. 3, the mutual information is shown, as a function of

the sensor SNR, in a network with uniform clustering (with all
possible numbers of decision levels). The communication links
between the sensors and the first-level FCs are noisy, with a
cross-over probability 𝑝 equal to either 0.01 (solid lines) or
0.05 (dashed lines).

As one can see, the presence of noise in the communication
links limits the maximum achievable mutual information, i.e.,
the maximum information transfer rate across the network.
This phenomenon is more pronounced the larger is the number
of decision levels. In fact, in this case the information loss
across the network is the highest possible.

In Fig. 4, the probability of decision error is shown, as a
function of the mutual information, in a scenario with uniform
clustering. Communication links between sensors and first-
level FCs are noisy, with cross-over probability 𝑝 = 0.05.

The limiting (for SNRsensor → ∞) operational points on
the 𝑃e− 𝐼 curve (already introduced in Fig. 2), corresponding
to all possible numbers of decision levels (1, 2, 3, and 4,
respectively), are shown. For a given number of decision
levels, the system operational point moves from the position
corresponding to 𝐼 = 0 (for very low values of SNRsensor) to
the limiting position, which is asymptotically approached for
SNRsensor → ∞. Therefore, the results in Fig. 4 show clearly
the limitations, from a practical viewpoint, introduced by a
hierarchical network architecture with decentralized detection
and multi-level fusion.

IV. CONCLUDING REMARKS

In this letter, we have characterized, from an information-
theoretic perspective, the behavior of clustered sensor net-
works with decentralized detection of a binary phenomenon in
the presence of multi-level majority-like information fusion.
By modelling the network as a BIBO system, it has been
shown that its operational point lies on a single 𝑃e − 𝐼 curve,
regardless of the network configuration. In particular, the
position of the operational point depends on the network char-
acteristics, namely, the phenomenon (its a priori probability
distribution), clustering (uniform or non-uniform), the number
of decision levels, and the (observation and communication)
noise level. Therefore, our simple approach allows to directly
compare different networking schemes.
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