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a b s t r a c t

In this paper, we consider a central estimating officer (CEO) scenario, where sensors observe a noisy ver-
sion of a binary sequence generated by a single source (the ‘‘phenomenon’’) and the access point (AP)’s
goal is to estimate, by properly fusing the received data, this sequence. Due to this system model, the data
sent by the sensors are correlated and, therefore, it is possible to exploit a proper a priori information in
the localized fusion operation performed at the AP. In the presence of channel coding at the sensors and
block faded communication links, we first derive the optimum maximum a priori probability (MAP) joint
decoding and fusion rule, showing its computational unfeasibility. We then derive two suboptimal
decoding/fusion strategies. In the first case, the fusion rule exploits the source correlation and receives,
at its input, the soft-output values generated by a joint channel decoder (JCD). Two possible iterative
JCD algorithms are proposed: one with ‘‘circular’’ iterations between the component decoders (associated
with the sources) and one with ‘‘parallel’’ iterations between the component decoders. For each algo-
rithm, two information combining strategies are considered. In the second case, a separate channel
decoding (SCD) scheme is considered and the correlation is exploited only during the fusion operation.
Our results show that the scheme with SCD followed by fusion basically leads to the same probability
of decision error of the scheme with JCD and fusion with, however, a much lower computational com-
plexity, thus making it suitable to resource-constrained scenarios.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Wireless multiple access schemes, where correlated signals, ob-
served at different nodes, need to be transferred to one or more
collectors, model several communication scenarios. For example,
these schemes apply to wireless sensor networks, where a set of
nodes collect and transmit correlated data to a common sink in
an energy-efficient way [1]. In the case of a single collector node
(the access point, AP), the design of efficient transmission mecha-
nisms is often referred to as reach-back channel problem [2–4].
Assuming orthogonal additive white Gaussian noise (AWGN) chan-
nels between the nodes and the collector, the separation between
source and channel coding is known to be optimal [4]. This means
that the theoretical limit can be achieved by, first, compressing
each source up to its Slepian–Wolf (SW) limit and, then, utilizing
independent capacity-achieving channel codes (one per source)
[5]. In an attempt to exploit such correlation, many works have re-
cently focused on the design of distributed source coding schemes
that approach the SW fundamental limit on the achievable com-
pression rate [6,7].

An alternative solution to distributed source coding is given by
joint source channel coding (JSCC) schemes, where the correlated
sources are not source encoded but only channel encoded and
the source correlation is exploited at the decoder, which jointly
recovers the information signals of all sources. For this reason, this
approach is also referred to as joint channel decoding (JCD) [8–10].
In this scenario, the presence of block-faded channels may dramat-
ically degrade the performance, unless some countermeasures are
taken at the transmitters to protect highly-faded links.

In this paper, we analyze an instance of the so-called central
estimating officer (CEO) problem [11]. More precisely, the informa-
tion sequences at the input of the sensors correspond to noisy
observations of the sequence output by a single binary source.
The AP’s goal, upon reception of proper information from the sen-
sors, is to estimate the source sequence. While we first derive the
optimal maximum a posteriori (MAP) estimation strategy, we then
propose suboptimal (but computationally feasible) estimation
strategies. A first suboptimal strategy makes use of JCD, followed
by a proper fusion of the soft-output values generated by the JCD
algorithm. We directly compare two possible JCD algorithms: with
circular and parallel iterations (with soft information exchange)
between the component decoders, respectively. According to the
fusion strategy, source correlation is exploited in both JCD and
fusion operations. Two possible strategies to combine the
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information sequences output by the component decoders are con-
sidered. In order to reduce the complexity of the decoding opera-
tion, we propose a second scheme where the source correlation
is not exploited by the decoders, which decode independently of
each other, but only in the fusion operation. We denote this
scheme as separate channel decoding (SCD) followed by fusion.
Our results show that the probability of decision error, after fusion,
slightly depends on the particular channel decoding strategy,
either joint or separate. This suggests, in more general terms, that
the presence of information fusion may have a relevant impact on
the channel coding/decoding strategy. For instance, in the consid-
ered CEO scenario the presence of fusion makes the use of JCD
irrelevant.

This paper is structured as follows. In Section 2, preliminaries
on the system model are provided. In Section 3, optimal and sub-
optimal decoding and fusion strategies are derived for the scenario
of interest. Numerical results are presented and discussed in Sec-
tion 4, whereas Section 5 concludes the paper.

2. System model

2.1. Communication scheme

Consider n spatially distributed nodes which detect (i.e., receive

at their inputs) binary information sequences xðkÞ ¼ ½xðkÞ0 ; . . . ; xðkÞL�1�,
where k ¼ 1; . . . ;n and L is the signals’ length (the same for all sen-
sors).1 The following simple additive correlation model is
considered:

xðkÞi ¼ bi � zðkÞi i ¼ 0; . . . ; L� 1 k ¼ 1; . . . ; n

where fbig are independent and identically distributed (i.i.d.) binary
random variables and fzðkÞi g are i.i.d. binary random variables with
probability q to be 0 (and 1� q to be 1). In particular, we assume
that Pðbi ¼ 1Þ , p1 and Pðbi ¼ 0Þ , p0 ¼ 1� p1, regardless of the va-
lue of i. Obviously, if q = 0.5 there is no correlation between the
binary information signals fxðkÞgn

k¼1, whereas if q = 1 the informa-
tion signals are identical. The random variable bi can be interpreted
as the status (common to all sources) of a physical phenomenon un-
der observation.

A possible scenario where our model applies is in the presence
of n cameras independently observing the same scene, e.g., a body,
from different perspectives. For example, it could be of interest to
detect sudden and/or periodic body movements. Following the ap-
proach in [12], each camera could extract an average luminosity
signal representative of the movements. Obviously, the signals ex-
tracted by different cameras would be highly correlated. In this
case, transmitting the cameras’ data to a common sink and exploit-
ing the residual correlation may improve the performance of an
overall decision process. The binary correlation model is also
meaningful in wireless sensor networking scenarios where it is of
interest to detect if the phenomenon under observation (e.g., tem-
perature, humidity, pressure) overcomes a critical threshold. In
Section 4, we will investigate the proposed system performance
using ‘‘synthetic’’ data. The application of our algorithms to realis-
tic scenarios, e.g., distributed video processing, goes beyond the
scope of this paper and will be subject of future investigation.

According to the chosen correlation model, the a priori joint
probability mass function (PMF) of the information signals at the
inputs of the n sensors at the ith epoch ði 2 f0; . . . ; L� 1gÞ can be
computed. After a few manipulations, one can show that [13]

pðxiÞ ¼ pðxijbi ¼ 0Þpðbi ¼ 0Þ þ pðxijbi ¼ 1Þpðbi ¼ 1Þ
¼ p0qnb ð1� qÞn�nb þ p1ð1� qÞnbqn�nb i ¼ 0; . . . ; L� 1 ð1Þ

where xi ¼ ðxð1Þi ; . . . ; xðnÞi Þ and nb ¼ nbðxiÞ is the number of zeros in xi.
In Fig. 1, the overall model for the CEO scenario of interest is

shown. The goal of the AP is that of recovering the information sig-

nal b ¼ fbigL�1
i¼0 with the lowest possible probability of error. xðkÞ is

the noisy version of b observed at the kth sensor. At this point, the
sensor channel encodes the information sequence at its input.
Referring to the equivalent low-pass signal representation, we de-
note as sðkÞ the complex samples transmitted by the kth sensor and
as N the length of sðkÞ. In the remainder of this work, we will as-
sume the same transmitting rate r ¼ L=N at all sensors: however,
the proposed approach is general and can be applied also to sce-
narios where the transmitting rate varies from sensor to sensor.

By aðkÞ ¼ ½aðkÞ0 ; . . . ;aðkÞN�1� we denote the complex gain vector over
the kth link, which encompasses both path loss and fading, and

by gðkÞ ¼ ½gðkÞ0 ; . . . ;gðkÞN�1� a complex AWGN vector with variance
r2 ¼ N0=2. We assume a block fading model for the communica-
tion links between the sensors and the AP: more precisely, the fad-
ing coefficient of each link is constant for the entire duration of a

single packet transmission, i.e., aðkÞi ¼ aðkÞ for i ¼ 0; . . . ;N � 1. The
fading coefficients are assumed to be independent from link to link
and, on a single link, between consecutive packet transmissions.2

Their amplitudes fjaðkÞjgn
k¼1 are assumed to be Rayleigh distributed

with E½jaðkÞj2� ¼ 1. The information sequence at each sensor is chan-

nel encoded and we denote as mðkÞ ¼ ½mðkÞ0 ; . . . ; mðkÞN�1� the binary (not

modulated) codeword ðmðkÞi 2 f0;1gÞ generated at the kth node. For
simplicity, we assume that binary phase shift keying (BPSK) is the

modulation format, i.e., sðkÞi ¼ yðkÞi

ffiffiffiffiffiffiffi
EðkÞc

q
, where yðkÞi ¼ 2mðkÞi � 1 ¼ �1

and EðkÞc is the energy per coded bit transmitted by the kth node. Indi-

cating by PðkÞt the transmit power at the kth node, it holds that

EðkÞc ¼ PðkÞt Tbit, where Tbit is the bit duration. Since we are considering
a block fading model, we assume that the link gains can be perfectly
estimated at the AP (e.g., using a short preamble with pilot symbols).

We consider a system with orthogonal links. This is meaningful
for wireless sensor networking scenarios where reservation-based
(or polling) medium access control (MAC) protocols are chosen.
The use of these protocols allows to represent the multiple access
channel as a set of parallel orthogonal channels [4].

Under the above assumptions, after matched filtering and
carrier-phase estimation, the real observable at the AP, relative to
a transmitted sample, can be expressed as

rðkÞi ¼ ja
ðkÞj

ffiffiffiffiffiffiffi
EðkÞc

q
yðkÞi þ gðkÞi i ¼ 0; . . . ;N � 1 k ¼ 1; . . . ;n ð2Þ

where gðkÞi is an AWGN variable with zero mean and variance N0=2.
The channel signal-to-noise ratio (SNR) can be defined as

cb ¼
Eb

N0
¼ Ec

rN0

where we have omitted the dependence on the kth link, since all
communications are supposed to have the same statistical
properties.

1 In Appendix B, a table with a list of mathematical symbols used throughput the
paper is provided.

2 For the sake of notational simplicity, the derivation is carried out considering a
single packet transmission act, i.e., we do not use any index to indicate the specific
packet.
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3. Decoding and fusion strategies

3.1. Optimal MAP joint decoding and fusion strategy

In order to estimate the ith bit emitted by the source, i.e., bi

ði ¼ 0; . . . ; L� 1Þ, we consider the following MAP rule:

b̂i , arg max
bi¼0;1

P bijLð1Þ
ch ; . . . ;L

ðnÞ
ch

� �
ð3Þ

where L
ð1Þ
ch ; . . . ;L

ðnÞ
ch are the vectors of channel log-likelihood ratios

(LLRs) (one for each source) defined as follows3:

L
ðkÞ
i;ch ¼ ln

pðrðkÞi jy
ðkÞ
i ¼ 1;aðkÞi Þ

pðrðkÞi jy
ðkÞ
i ¼ �1;aðkÞi Þ

¼
2rðkÞi

ffiffiffiffiffiffiffi
EðkÞc

q
aðkÞi

��� ���
r2

k ¼ 1; . . . ;n: ð4Þ

Using the Bayes’ theorem, one obtains:

b̂i ¼ arg max
bi¼0;1

p L
ð1Þ
ch ; . . . ;L

ðnÞ
ch jbi

� �
PðbiÞ:

At this point, one may average over all possible sequences of L infor-
mation bits b, thus obtaining

b̂i ¼ arg max
bi¼0;1

X
b:bi

p L
ð1Þ
ch ; . . . ;L

ðnÞ
ch jb

� �
PðbÞ ð5Þ

where the notation
P

b:bi
denotes the sum over all sequences b with

bi in the ith position. From (5), by using the total probability theo-
rem, one obtains:

b̂i ¼ argmax
bi¼0;1

X
b:bi

p L
ð1Þ
ch ; . . . ;L

ðnÞ
ch jb

� �
PðbÞ

¼ argmax
bi¼0;1

X
b:bi

X
xð1Þ ;...;xðnÞ

p L
ð1Þ
ch ; . . . ;L

ðnÞ
ch jx

ð1Þ; . . . ; xðnÞ
� �

P xð1Þ; . . . ;xðnÞjb
� �

PðbÞ

¼ argmax
bi¼0;1

X
b:bi

X
xð1Þ ;...;xðnÞ

X
sð1Þ ;...;sðnÞ

p L
ð1Þ
ch ; . . . ;L

ðnÞ
ch js

ð1Þ; . . . ; sðnÞ
� �

P sð1Þ; . . . ; sðnÞjxð1Þ; . . . ;xðnÞ
� �

P xð1Þ; . . . ;xðnÞjb
� �

PðbÞ

ð6Þ

where, in the last line, we have exploited the fact that the joint PDF
of fLð1Þ

ch ; . . . ;L
ðnÞ
ch g, conditionally on fsð1Þ; . . . ; sðnÞg, does not depend

on b. The probability

P sð1Þ; . . . ; sðnÞjxð1Þ; . . . ;xðnÞ
� �

is equal to one if fsð1Þ; . . . ; sðnÞg are the
codewords associated with fxð1Þ; . . . ;xðnÞg, respectively, or to zero
otherwise. Since the information sequences fxð1Þ; . . . ;xðnÞg are
coded independently, it follows that:

P sð1Þ; . . . ; sðnÞjxð1Þ; . . . ; xðnÞ
� �

¼
Yn

i¼1

P sðiÞjxðiÞ
� �

: ð7Þ

On the other hand, since the coded signals are sent over orthogonal
block-faded channels, it holds:

p L
ð1Þ
ch ; . . . ;L

ðnÞ
ch js

ð1Þ; . . . ; sðnÞ
� �

¼
Yn

i¼1

YN
j¼1

p L
ðiÞ
ch;jjs

ðiÞ
j

� �
: ð8Þ

Finally, P xð1Þ; . . . ;xðnÞjb
� �

can be obtained from the correlation mod-
el. At this point, each addendum at the right-hand side of (6) can be
evaluated and b̂i can thus be obtained.

While the above MAP strategy is exact, direct evaluation of the
sums at the right-hand side of (6) is computationally intractable. In
fact, the number of sums in the argument of the argmax in (6) is
2L�1 � ð2LÞn � ð2LÞn � 2Lð2nþ1Þ, where we use the symbol � to loosely
indicate ‘‘on the order of.’’ Moreover, each addendum of the sum
in (6) is composed by three factors (neglecting the term PðbÞ)
and the complexity, in terms of summations and multiplications, is

nN|{z}
from ð8Þ

� n|{z}
from ð7Þ

� nL|{z}
from ð1Þ

¼ n3LN:

The computational complexity of the optimal MAP fusion rule is
therefore

Copt � 2Lð2nþ1Þ � n3LN: ð9Þ
Therefore, we propose suboptimal, but computationally feasible,
strategies.

3.2. Suboptimal strategies

The proposed sub-optimal strategies rely on the separation be-
tween channel decoding and fusion. The general block model of the
AP is shown in Fig. 2a. While decoding is based on the channel
observations (i.e., channel LLRs), fusion is based on the soft-output
values generated by the channel decoder. In the following, we first
describe the fusion operation, common to both (JCD and SCD) sub-
optimal strategies. Then, we describe the JCD and SCD operations.

3.2.1. Fusion
The MAP fusion rule reads:

b̂i , arg max
bi¼0;1

PðbijLiÞ ¼ arg max
bi¼0;1

X
fxig

PðbijLi; xiÞPðxijLiÞ ð10Þ

Fig. 1. CEO scenario: multiple access scheme followed by the AP with decoding and fusion.

3 We remark that the uppercase P is used to denote the PMF of a discrete random
variable, whereas the lowercase p is used to denote the probability density function
(PDF) of a continuous random variable.
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where Li , ½Lð1Þ
i ; . . . ;L

ðnÞ
i �; i ¼ 0; . . . ; L� 1, is the vector of LLRs, rel-

ative to the information sequence xi, at the output of the n decoders,
xi ¼ ½xð1Þi ; . . . ; xðnÞi � are the noisy binary observations, relative to the
ith information symbol bi, at the inputs of the sensors, and the
sum in (10) is carried out over all possible 2n configurations for
xi. The specific expression of fLig depends on the channel decoder
implementation (either JCD or SCD) and will be clearly described
later.

After a few mathematical passages, the fusion rule (10)
becomes

b̂i ¼ arg max
bi¼0;1

X
fxig

PðxijbiÞPðbiÞP
b	¼0;1Pðxijb	ÞPðb	Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

from the correlation model

Yn

j¼1
PðxðjÞi jL

ðjÞ
i Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

from decoder LLRs

ð11Þ

where we have highlighted that each addendum of the outer sum
can be expressed as a product of two terms: the first one depends
only on the correlation between the observations fxðjÞi g, whereas
the second one depends only on the decoder LLRs, i.e., only on the
decoding scheme. Since the number of possible configurations for
xi is 2n and each addendum has a complexity on the order of n prod-
ucts, the computational complexity, in terms of summations and
multiplications, of this simplified fusion rule is

Csub � n2n: ð12Þ

If one compares Csub in (12) with Copt in (9), it is easy to observe that
the computational has been drastically reduced, since in practical
applications n
 L. Moreover, one should also consider the compu-
tational complexity needed to derive the vectors of LLRs associated

with the information sequences. However, as will be shown in Sec-
tions 3.2.2 and 3.2.3, this complexity is limited and, therefore, the
computational complexity of the overall simplified fusion rule is
still lower than that of the optimal MAP strategy.

The probability of decision error on a single bit can then be
written as

Pe ¼ Pðb̂i ¼ 0jbi ¼ 1Þp1 þ Pðb̂i ¼ 1jbi ¼ 0Þp0: ð13Þ

The evaluation of the average probability of decision error, for a gi-
ven value of the channel SNR, can be carried out through simula-
tions, by averaging over a sufficiently large number of transmitted
packets. However, the asymptotic (for very large values of the chan-
nel SNR) probability of decision error can be analytically evaluated.
In this case, in fact, the decoding scheme allows to recover perfectly
the effectively transmitted sequence and its limiting value (for large
channel SNR) becomes

Pe;lim ¼ p1

Xbn�K
2 c�1

k¼0

n
k

� �
ð1� qÞn�kqk þ p0

Xn

k¼bn�K
2 c

n
k

� �
ð1� qÞkqn�k ð14Þ

where K is the following function of q and p0:

Kðq;p0Þ ,
ln 1�p0

p0

ln q
1�q

:

A formal proof of (14) is given in the Appendix A.
The limiting probability of decision error in (14) corresponds to

the probability of decision error in the presence of majority fusion,
as typically observed in the realm of distributed detection [14], and
does not depend on the channel SNR. Therefore, the probability
(14) corresponds to a floor. Moreover, the final expression (14)
shows that the limiting probability of decision error does not de-
pend on the particular decoding scheme under use (either JCD or
SCD). However, as will be shown in Section 4, the chosen decoding
scheme will affect the behavior of the probability of decision error
above the limiting floor. In particular, the decoding strategy will
influence the ‘‘speed’’ at which the floor is reached, i.e., the channel
SNR at which the probability of decision error practically converges
to its floor.

3.2.2. Joint channel decoding
In this case, n subdecoders, one per sensor, are present at the

AP. Each subdecoder works on the basis of its channel LLRs and
the a priori soft information obtained from the soft-output infor-
mations generated by the other subdecoders (associated with the
remaining sources), properly combined taking into account the
source correlation. This combining operation is carried out by a
block denoted, in the following, as ‘‘COMB.’’ The key idea of an
overall JCD iterative decoder is that of iteratively refining, by run-
ning the subdecoders, the exchanged soft information. The ex-
changed soft information at the input of a specific subdecoder
represents an a priori ‘‘suggestion,’’ by the other subdecoders, on
the values of the information bits at its input. Therefore, the more
reliable this exchanged information, the better the performance of
each subdecoder. Various activation schedules for the subdecoders
can be considered and the performance of the iterative decoder de-
pends on the chosen schedule.

In Fig. 3, two possible iterative decoding schedules are shown:
(a) circular and (b) parallel. In the presence of circular scheduling,
the subdecoders sequentially carry out their operations, exploiting
the soft-output information generated by the previous subdecod-
ers. At the very first iteration, DEC1 decodes its information bits
without any a priori information and passes the soft-output values
to the COMB block. At this point, a priori (input) information for
DEC2 is generated only on the basis of the soft-output values out-
put by DEC1. After DEC2 has carried out its decoding operations, the

(a)

(b)

(c)
Fig. 2. Suboptimal approach to the CEO problem with separation of the decoding
and fusion operations (case (a)). In particular, the decoding operation can be
implemented by means of either JCD (case (b)) or SCD (case (c)).

G. Ferrari et al. / Information Fusion 15 (2014) 80–89 83
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generated soft-output values are sent to the COMB block which, in
turns, generates a priori (input) information for DEC3 on the basis
of the soft-output values received output by DEC1 and DEC2. In
general, during the first circular iteration the a priori (input) infor-
mation for DECi is generated from the soft-output values output by
DECi�1;DECi�2; . . . ;DEC1. From the second iteration on, the a priori
information for DECi is generated from the most recent soft-output
values output by fDECjgj–i.

In the presence of parallel scheduling (illustrated in Fig. 3b), the
channel subdecoders decodes carry out their decoding iterations at
the same time. Therefore, at the first iteration all decoders do not
use any a priori information. Once the decoders have carried out
their decoding operations, the soft output values are passed to
the COMB block, which acts as in the previous case with circular
scheduling. From the second iteration on, each subdecoder can
thus use a priori (input) information obtained from the soft values
output by the other subdecoders at the previous iteration.

Regardless of the chosen scheduling, one can write that the total
LLR relative to the ith observable at the input of the kth subdecoder
as follows [15]:

L
ðkÞ
i;in ¼

L
ðkÞ
i;ch þL

ðkÞ
i;ap i ¼ 0; . . . ; L� 1

L
ðkÞ
i;ch i ¼ L; . . . ;N � 1

8<:
where the channel LLR, relative to the ith observable ði 2 f1; . . . ;NgÞ
from the kthe node ðk 2 f1; . . . ;ngÞ, can be expressed as in (4) and
the a priori component of the LLR at the input of the kth subdecoder
can be written as

PðxðkÞi Þ ¼
X

xi :x
ðkÞ
i
¼0

PðxiÞ: ð15Þ

Eq. (15) can be written as:

PðxðkÞi Þ ¼
X

x0
i

P xðkÞi ¼ 0jx0i
� �

P x0i
� �

ð16Þ

where

x0i ¼ xi n xðkÞi ¼ xð1Þi ; . . . ; xðk�1Þ
i ; xðkþ1Þ

i ; . . . ; xðnÞi

� �T

is the column vector denoting the bits at the input of the various
sensors, with the exception of the kth, at time epoch i. The terms
Pðx0iÞ denote the probabilities of n � 1 of the n sources coming from
the other decoders. Assuming such n� 1 outputs as independent,
one can write

P x0i
� �
¼

Yn

‘ ¼ 1
‘–k

P xð‘Þi

� �
:

The terms Pðxð‘Þi Þ can be computed from the soft output of the other
component decoders and, therefore, Eq. (16) can be rewritten as

P xðkÞi

� �
¼
X

x0
i

P xðkÞi ¼ 0jx0i
� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

a priori source correl:

Yn

‘ ¼ 1
‘–k

bP xð‘Þi

� �
|fflfflfflffl{zfflfflfflffl}

from decoder ‘

:
ð17Þ

The interested reader is referred to [16] for an information-
theoretic analysis of the capacity limits in the presence of this
optimal combination rule. In [15], a simplified sub-optimal version
of (17), which takes into account only the pairwise a priori
probabilities, can be found. In particular, the a priori component
of the LLR at the input of the kth subdecoder can be written as a
weighed average (based on the correlation) of the a priori probabil-
ities generated by the other subdecoders [15]

PðxðkÞi Þ ’
2

n� 1

Xn

‘ ¼ 1‘–k

X
xð‘Þ

i
¼�1

bPðxð‘Þi Þ|fflfflffl{zfflfflffl}
½from decoder ‘�

� Pðxð‘Þi ; y
ðkÞ
i Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

½a priori source correl:�

:

ð18Þ

From a complexity point of view, we briefly recall a few results from
[15]. Each subdecoder has a complexity Cdec, which depends on the
specific decoding algorithm under use, and is linearly dependent on
the number N of coded bits:

Cdec ¼ NCdec�bit

where Cdec�bit is the decoding complexity ‘‘per coded bit.’’ Moreover,
at the input of each subdecoder one needs to consider a proper
combination of the LLRs on the information bits output by the other
n� 1 decoders—this operation is carried out at the COMB block.
This combination has a complexity which depends linearly on the
number L of information bits per sequence. In the presence of opti-
mal LLR combination (17), the complexity required to combine
n� 1 LLRs, relative to corresponding n� 1 bits at the same epoch,
is on the order of 2nCLLR, where CLLR is the complexity required to
combine 2 LLRs. This is due to the fact that one has to consider all
the possible bit sequences of length n� 1. When the sub-optimal
pairwise combination (18) is considered, ne can assume that the
complexity required to combine n� 1 LLRs, relative to correspond-
ing n� 1 bits at the same epoch, is on the order of nCLLR. Therefore,
denoting the number of (circular or parallel) iterations as next

it , the

(a) (b)
Fig. 3. JCD algorithm with (a) circular scheduling or (b) parallel scheduling.
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overall complexity of the JCD algorithm, for the two considered
combinations ((17) or (18)), can be written, regardless of the chosen
scheduling, as

Copt
JCD � next

it nðNCdec�bit þ 2n LCLLRÞ ð19Þ

Csub
JCD � next

it nðNCdec�bit þ nLCLLRÞ: ð20Þ

In general, one can write

CJCD ¼ CJCD�dec þ CJCD�LLR

where CJCD�dec ¼ next
it nNCdec�bit is the complexity associated to

decoding and is the same for the two considered combination rules.
CJCD�LLR is the complexity associated to LLR combination, and it
turns out that

Copt
JCD�LLR ¼

2n

n
Csub

JCD�LLR:

Therefore, for increasing values of the number n of sources, the opti-
mal combination rule may become unfeasible (if CLLR is high) and,
therefore, one may have to resort to the sub-optimal pairwise com-
bination rule. However, in Section 4 it will be shown that the perfor-
mance degradation incurred by sub-optimal combination is limited.

3.2.3. Separate channel decoding
In order to reduce the computational complexity of the decoder,

JCD, which uses the source correlation, can be replaced by SCD,
which prescinds from source correlation. In this case, each subde-
coder separately decodes its information bits by relying only on its
own channel LLRs. In other words, the input LLRs are

L
ðkÞ
i;in ¼L

ðkÞ
i;ch i ¼ 0; . . . ;N � 1; k ¼ 1; . . . ; n:

Obviously, since the source correlation is not exploited, no a priori
information can be derived for the subdecoders. In other words, in
the presence of SCD ‘‘one-shot’’ per sensor decoding is considered.
We remark that the fusion rule after SCD is the same derived in Sub-
Section 3.2.1 and given by (11).

The computational complexity of the SCD algorithm can be
straightforwardly obtained from (20) by noting that the second
term at the right-hand side is not present (no LLR combination is
performed) and next

it ¼ 1 (no iteration is performed). Therefore,
one obtains:

CSCD ¼ CSCD�dec ¼ nNCdec�bit

with a speed-up, with respect to the JCD case, approximately on the
order of Oðnext

it Þ (assuming that LLR combination is much less com-
putationally intense of per node decoding).

4. Numerical results

We now present numerical results for the proposed scenario, by
means of a custom simulator written in C. In particular, each of the
source sequences is encoded using a regular (3,6) low-density par-
ity-check (LDPC) code, as in [15]. The considered LDPC code has a
rate equal to 1/2 and L = 1000. Each component LDPC subdecoder
at the AP uses a classical sum-product algorithm with a maximum
number nint�max

it ¼ 50 of internal iterations. In the presence of JCD,
the number next

it of external iterations between the subdecoders is
fixed to 20. Finally, q is set4 to 0.95. In most of the results presented
in the remainder of this section, we will consider a binary phenom-
enon with equally likely statuses, i.e., p0 ¼ p1 ¼ 1=2. However, at the
end of the section we will also investigate the performance in the

case with p1 ¼ 1=10 (i.e., rare phenomenon). For a given SNR, the re-
sults are averaged over different independent runs until at least 200
received packets or 104 received bits are erroneous. These values
have been chosen in order to guarantee a 95% confidence interval. Fi-
nally, in order to bound the simulation duration, the maximum num-
ber of transmitted bits is set, for each SNR value, to 109.

4.1. Partial performance analysis: decoding

We first analyze the performance of the decoding strategies
presented in Sections 3.2.2 and 3.2.3, in order to highlight (i) the
impact of the scheduling strategy and (ii), in the presence of SCD,
the relative loss with respect to JCD schemes. The average bit error
rate (BER) and the outage probability (denoted as PO) are the con-
sidered performance indicators. The average BER is evaluated by
averaging over all n data flows and all fading generations. Concern-
ing the outage probability, an outage event occurs when at least
one bit in at least one of the n packets from the sources to the
AP is in error. The outage probability is thus evaluated as the arith-
metic average of the numbers of outage events over all fading
generations.

In Fig. 4, the performance of JCD schemes with circular and par-
allel scheduling, is investigated considering various values of the
number of sensors n. In Figs. 4a and 4c, the BER is shown, as a func-
tion of the SNR, in the presence of pairwise and optimal source
information combination, respectively. In all cases, as expected,
when the number of sources increases, the BER reduces, owing to
a diversity effect. In fact, since there is a larger number of commu-
nication links, the high BER at the output of a strongly faded link
can be partially lowered thanks to the reliable a priori information
coming from the soft-output subdecoders associated with the
other sources which experience less faded links. In the case of both
pairwise and optimal source information combination, it can be
observed that circular scheduling and parallel scheduling have
roughly the same performance. Therefore, one may conclude that
scheduling in source information combination has a minor impact.

In Figs. 4b and 4d, the outage probability is shown, as a function
of the SNR, in the presence of pairwise and optimal source combi-
nation, respectively. Considerations similar to those carried out for
the BER performance still hold. In this case, however, a significant
difference can be highlighted with respect to the performance in
terms of BER. In fact, the outage probability increases when the
number of sources n increases (e.g., from 2 to 4). This is due to
the fact that when the number of sources and, consequently, of
transmitted packets increases, it is more likely that at least a bit
(over all links) is in error. On the other hand, if the outage proba-
bility is the performance metric of interest, the beneficial presence
of a priori information from the other (less faded) links is less
noticeable than in the BER-based analysis, and the worst link dom-
inates. Finally, one should note that the performance with pairwise
or optimal source combination are very similar. This is due to the
fact that, after a sufficiently large number of iterations, the decoder
reliability (especially in terms of outage probability) reaches its
maximum value possible.

In Fig. 5, the performance of the JCD algorithm with parallel
scheduling (with pairwise and optimal source combination) is
compared with that of the SCD algorithm. In Fig. 5a, the BER is
shown as a function of the SNR. In this case, SCD shows a relevant
performance loss. This is to be expected, since the subdecoders do
not exchange any soft-information to improve their performance.
More precisely, since all communication links are statistically
equivalent, the performance with SCD does not depend on the
number of sources n. Moreover, the use of the optimal source com-
bination at the receiver allows to obtain a significant performance
improvement (an SNR gain around 5 dB at a BER equal to 10�2 and
n = 2) with respect to SCD. In Fig. 5b, the outage probability is

4 We have performed other simulations for different values of q and found results
similar to those presented in this paper for values of q higher than 0.8.
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shown as a function of the SNR. In this case, the same consider-
ations carried out for Fig. 4b are still valid. Therefore, the perfor-
mance worsens as the number of sensors increases, and this
degradation can be observed with both JCD (either with pairwise
or optimal source information combination) and SCD.

At this point, one may conclude that the use of JCD is the best
choice in decoding correlated sources, since SCD has a relevant per-
formance loss and, therefore, the soft information output by a JCD
is more reliable. However, as will be shown in Section 4.2, when fu-
sion is considered this loss reduces and the decoding algorithm
(either JCD or SCD) does not affect for the performance.

4.2. Complete performance analysis: decoding and fusion

After analyzing the performance of the decoding block, we now
evaluate the overall performance in the presence of both decoding
and fusion operations. More precisely, evaluate the probability of
decision error. In Fig. 6, the probability of decision error is shown,
as a function of the SNR, for various values of the number of sen-
sors n. In the decoding block, the JCD algorithm is used, with circu-
lar or parallel scheduling. The performance with pairwise source
information combination in the JCD (case (a)) is compared with
that associated with optimal source information combination in
the JCD (case (b)).

As anticipated in Section 3.2.1, all curves reach, for large values
of cb, the floor predicted by (14). In particular, since for
p0 ¼ p1 ¼ 1=2 the fusion rule does not improve (in terms of the
floor) when n increases from an odd value (e.g., 3) to the next even
value (4), no improvement is observed for the limiting perfor-
mance values in Fig. 6. Comparing the results in Fig. 6 with those
presented in Section 4.1, it can be concluded that the scheduling

strategy and the combination operation used in the JCD algorithm
has no impact at all if information fusion is considered afterwards.
In other words, this suggests that the presence of information fu-
sion dominates over channel decoding. For the sake of complete-
ness, in the same figure the theoretical performance limits
predicted by the use of (14) is shown—they will be evaluated also
in the cases considered in the following figures.

In order to validate the conjecture at the end of the previous
paragraph, in Fig. 7 the probability of decision error is shown, as
a function of the SNR, in a scenario with JCD and parallel schedul-
ing (with pairwise, JCD-(2), and optimal, JCD-(n-1), source combi-
nation) is directly compared with that of a scenario with SCD.
Various values of n are considered. First, all considerations about
the limiting performance (in terms of probability of decision error
floor) highlighted in Fig. 6 are still valid. It is interesting to observe
that, while SCD has a detrimental impact on the performance at the
output of the decoding algorithm (as shown in Section 4.1), this ef-
fect is highly reduced by the fusion operation. Use of optimal
source information combination allows to approach the floor
slightly faster for increasing values of the SNR. This allows to con-
clude that, when a CEO problem similar to that considered in this
work is of interest, source correlation does not have to be used in
the decoding algorithm, but only in the fusion operation. Therefore,
a simple decoding strategy (such as SCD) can be used, thus limiting
the receiver complexity without degrading its performance.

While all previous results (in both the current subsection and
Section 4.1) refer to scenarios with p0 ¼ p1 ¼ 1=2, we now investi-
gate the impact of unequal phenomenon a priori probabilities.
More precisely, we consider p1 ¼ 1=10 (rare phenomenon). In
Fig. 8, the probability of decision error is shown, as a function of
the SNR, for various values of the number of sensors n. In the
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decoding block, JCD with parallel scheduling (with pairwise, JCD-
(2), and optimal, JCD-(n � 1), source combination) or SCD are con-
sidered. In all cases, p1 ¼ 1=10 ðp0 ¼ 9=10Þ. The same conclusions
of Fig. 7 still apply. In particular, one can observe that the perfor-

mance loss of the SCD/fusion scheme, with respect to that of the
JCD-(2)/fusion scheme is very limited. Note also that the use of

0 5 10 15 20

γ
b
 [dB]

10
-4

10
-3

10
-2

10
-1

BER
n = 2, JCD-(n-1)
n = 4, JCD-(n-1)
n = 2, JCD-(2)
n = 4, JCD-(2)
n = 2, SCD
n = 4, SCD

(a)

0 5 10 15 20

γ
b
 [dB]

10
-2

10
-1

10
0

P
O n = 2, JCD-(n-1)

n = 4, JCD-(n-1)
n = 2, JCD-(2)
n = 4, JCD-(2)
n = 2, SCD
n = 4, SCD

(b)
Fig. 5. Comparative performance analysis of JCD (with parallel scheduling and
pairwise, JCD-(2), or optimal, JCD-(n � 1), source combination) and SCD algorithms:
(a) BER and (b) outage probability. Two values of n are considered (2 and 4) and, in
all cases, p0 ¼ p1 ¼ 1=2.
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optimal source information combination (JCD-(n � 1)) is beneficial
only for even values of n (i.e., for odd values of n-1). Obviously, the
floor predicted by (14) is still present. Note, however, that the fu-
sion rule now improves (in terms of the limiting performance)
when n increases from an odd value (e.g., 3) to the next even value
(4). As a general conclusion, the low-complexity SCD-based
scheme is effective also in scenarios where a rare phenomenon is
observed.

5. Concluding remarks

In this paper, we have analyzed a CEO scenario, where the sen-
sors observe a noisy version of a binary sequence generated by a
single source and the AP’s goal is to estimate, on the basis of the
channel encoded data received by the sensors and taking into ac-
count the source correlation, this sequence. We have first derived
the optimum MAP fusion rule. However, due to its unfeasible com-
putational complexity, we have proposed two-suboptimal strate-
gies, both based on the separation of decoding and fusion
operations. According to the first strategy, source correlation is
used in both decoding and fusion operations. In particular, in the
decodign block JCD algorithms are considered, with: circular/paral-
lel iterations of the a priori information between the component
decoders; pairwise/optimal source information combination.
According to the second strategy, source correlation is not used
in the decoding block, based on SCD, but only in the fusion block.
Our results have shown that the particular instance of the decoding
block (SCD, JCD, circular, parallel) has a strong impact on the aver-
age BER and outage probability before the fusion operation. How-
ever, when the probability of error after fusion is considered as a
performance indicator, the decoding strategy has a minor impact
on the performance. Therefore, the use of SCD followed by fusion
incurs a very limited performance loss with respect to a scheme
with JCD, keeping the computational complexity very low.

Appendix A. Derivation of the limiting probability of decision
error

When the channel SNR becomes very high, the iterative decod-
ing scheme (either JCD or SCD) allows to recover perfectly the
effectively transmitted sequence, denoted as xcorr

i . Therefore, it fol-
lows that:

lim
cb!1

Yn

j¼1

PðxðjÞi jL
ðjÞ
i Þ

" #
¼

1 if xi ¼ xcorr
i

0 if xi – xcorr
i

	
and the fusion rule (11) becomes

b̂i ¼ arg max
bi¼0;1

Pðxcorr
i jbiÞPðbiÞX

b	¼0;1

Pðxcorr
i jb

	ÞPðb	Þ

¼ arg max
bi¼0;1

Pðxcorr
i jbiÞPðbiÞ:

ð21Þ

Denoting nb ¼ nbðxcorr
i Þ as the number of zeros in xcorr

i , the probabil-
ity Pðxcorr

i jbiÞ in (21) can be written, according to the correlation
model presented in Section 2.1, as follows:

Pðxcorr
i jbiÞ ¼

ð1� qÞnbqn�nb if bi ¼ 0
ð1� qÞn�nbqnb if bi ¼ 1:

(
ð22Þ

By using (22), the decision strategy (21) becomes

Pðxcorr
i jbi ¼ 0Þp0

>b̂i¼0

<
b̂i¼1

Pðxcorr
i jbi ¼ 1Þð1� p0Þ

ð1� qÞnbqn�nb p0
>b̂i¼0

<
b̂i¼1

ð1� qÞn�nbqnb ð1� p0Þ

q
1� q


 �n�2nb
>b̂i¼0

<
b̂i¼1

ln
1� p0

p0

from which one finally obtains:

nb
>b̂i¼1

<
b̂i¼0

n�
ln

1�p0
p0

ln q
1�q

2

666664
777775:

Observing that

Pðnb ¼ kjbi ¼ 0Þ ¼ n
k

� �
qn�kð1� qÞk

Pðnb ¼ kjbi ¼ 1Þ ¼ n
k

� �
ð1� qÞn�kqk

after a few manipulations, one obtains (14).

Appendix B. List of mathematical symbols

In Table 1, the list of mathematical symbols used in this paper is
summarized.
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