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In this paper, we consider a surveillance scenario, where nodes of a Wireless Sensor Network (WSN) co- 

operate to detect an event of interest, e.g., the presence of a mobile target in a monitored region. The con- 

sidered scenario refers, for example, to ELectronic-signals INTelligence (ELINT), since detection is based 

on sensing the presence of anomalous electromagnetic signals in the monitored area. Leveraging previ- 

ous results in the field of cognitive wireless networking, we derive proper decision and fusion strategies. 

We investigate both clustered (where no direct communication between sensors and the Communica- 

tion and Control center, C2, is allowed and intermediate data fusion is performed at Cluster Heads, CHs) 

and unclustered (with direct communications between sensor nodes and the C2). System performance 

is analyzed in terms of False Alarm (FA)/Correct Detection (CD) probabilities and energy consumption, 

quantifying inherent tradeoffs between these performance indicators. 

© 2017 Elsevier B.V. All rights reserved. 

1

 

i  

m  

l  

d  

D  

r  

m

 

h  

p  

n  

g  

t  

t  

t  

l  

a  

t  

a  

M

s  

i

 

s  

u  

c  

s  

l  

t  

p  

c  

w

 

s  

U  

I  

o  

b  

w  

c  

a  

a  

h

1

. Introduction 

Wireless Sensor Networking (WSN) is one of the most promis-

ng technologies that have applications ranging from health care to

ilitary scenarios [1] , because of the following appealing features:

ow installation cost, unattended network operations, etc. Target

etection is a critical task for WSN-based surveillance applications.

etection of unauthorized targets in a monitored area can be car-

ied out by monitoring the presence of a signal of interest, which

ay be of different nature, e.g., seismic, electromagnetic, etc [2] . 

Different tar get detection schemes for surveillance scenarios

ave been proposed in the literature. In many cases, the main

erformance indicators used for system design are related to the

etwork detection capabilities, e.g., the probability that the tar-

et presence is correctly detected (see, e.g., [3,4] and references

herein). However, WSNs for target surveillance applications have

o cope with limitations in terms of energy consumption and la-

ency. Therefore, various approaches have been proposed in the

iterature to design WSN-based solutions for target detection that

lso minimize the overall latency [5] or the energy consump-

ion [6] . Event-triggered communication/networking protocols have

lso been exploited in other applications, e.g., in distributed con-
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ensus, where rapid convergence without communication burden

s desired [7–9] . 

Target detection and event-based detection are problems

trictly related to the field of cognitive networking, where some

nlicensed secondary nodes need to detect the presence of li-

ensed primary nodes’ activities [10] . In cooperative spectrum

ensing, secondary nodes send their data (raw sensed data or pre-

iminary decisions) to a common collector, which uses such data

o take a decision on the occupation of the considered bandwidth

ortion. In [11] , the authors consider a single-hop collaborative

ognitive network and derive optimal fusion strategies with and

ithout the knowledge of the nodes’ positions in the network. 

In this paper, we devise energy-efficient information fusion

trategies triggered by the detection of a mobile target, e.g., an

nmanned Aerial Vehicle (UAV). We consider an ELectronic-signals

NTelligence (ELINT) scenario, where the event detection is based

n the radio signal emitted by the mobile target [12] . Motivated

y the recent advances in SubGHz communication technologies,

hich allow relatively inexpensive wireless devices to communi-

ate at distances of the order of kilometers [13] , we first consider

 scenario with direct communications between the WSN nodes

nd the Communication and Control center (C2). In order to re-

uce the energy consumption and prolonging the network lifetime,

e consider the presence of clustering, so that the communication

ange can be reduced. In this case, local decisions are collected

y a Cluster Head (CH) using short-range communications. Proper

http://dx.doi.org/10.1016/j.inffus.2017.02.002
http://www.ScienceDirect.com
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Fig. 1. Illustrative scenarios of interest for mobile target detection: (a) direct sensor-C2 communications and (b) clustered (2-hop) topology. 
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1 In the remainder of this paper, the dimensional unit of power is not explicitly 

indicated, as the performance will be investigated in terms of normalized values (as 

discussed in more detail later). However, realistic values are expected to be on the 

order of mWs and tens of mWs for short-range and long-range communications, 

respectively. 
intermediate (at the CHs) and final (at the C2) fusion rules are

designed. Although event-based communication/networking proto-

cols and target detection are well-known problems, the novelty of

our work can be summarized as follows. First, we exploit a dual-

ity between cognitive wireless networking and WSN-based target

detection systems to efficiently tackle the target detection prob-

lem. Moreover, in this context we propose an analytical frame-

work which allows to evaluate two different performance indica-

tors: (i) detection capability, in terms of False Alarm (FA) and Cor-

rect Detection (CD) probabilities; and (ii) the overall network en-

ergy consumption. The obtained results show the inherent tradeoff

between these two performance indicators. 

The rest of the paper is structured as follows. In Section 2 ,

we present the system model. In Section 3 , we derive an analyt-

ical performance framework, in terms of FA/CD probabilities and

energy consumption. In Section 4 , a comparative (clustered-vs-

unclustered and simulation-based-vs-analytical) performance eval-

uation is carried out. Finally, concluding remarks are given in

Section 5 . 

2. System model 

2.1. Reference scenarios 

In Fig. 1 , the two illustrative scenarios of interest for mobile tar-

get (denoted as “intruder”) detection are shown. In both cases, the

C2 is placed at the center of the Region Of Interest (ROI), which

is assumed to be a circular region with a given radius R , while N

sensors are independent and identically distributed (i.i.d.), accord-

ing to a spatial uniform distribution, in the ROI. The proposed ap-

proach can, however, be generalized to other types of ROIs (at the

cost of a reduced analytical tractability) and the C2 could be placed

outside the ROI. For the sake of simplicity, in the remainder of this

paper we will assume that R = 1 (normalized radius, e.g., 1 km),

i.e., the ROI is a circle with unitary radius. The two scenarios of

interest in Fig. 1 refer to two different topologies. In case (a), one-

hop long-range communications between all N sensors and the C2

are allowed. Long-range communications are motivated by the re-

cent advances in SubGHz communication technologies, which al-

low relatively inexpensive wireless devices to communicate at dis-

tances of the order of kilometers [13] . In order to save energy, in

case (b) nodes are grouped into a fixed number (denoted as N c )

of clusters and, in each cluster, one of the inner nodes acts as CH.

Short-range communications (e.g., IEEE 802.15.4 or IEEE 802.11) be-

tween sensors and CHs are used inside the clusters, whereas long-

range communications between CHs and the C2 are allowed. It is

worth observing that in case (b) each CH is likely to be always
ctive (in order to be able to receive reports from the controlled

odes): hence, it consumes more energy than other nodes in its

luster. Therefore, if the CH is kept fixed, its energy will deplete

ooner than those of the other non-CH nodes. In order to equalize

he energy consumption within a cluster, we will adopt a CH ro-

ation strategy, giving all nodes the same probability of becoming

H. 

Denoting the set of nodes belonging to the i th cluster

 i = 1 , . . . , N c ) as C i , it follows that 

N c 
 

i =1 

|C i | = N 

hereas |C i | is the size of the i th cluster. In Section 4 , clusters

ill be formed (with a simulation-based approach) through the

ell-known k -means algorithm [14,15] . Although several cluster-

ng algorithms can be considered, k -means was selected as it leads,

n average, to uniform clusters, i.e., |C i | = � N/N c � , ∀ i ∈ { 1 , . . . , N c } ,
here �·� denotes the integer nearest to the argument. We remark

hat cluster formation goes beyond the scope of this paper. 

As anticipated in Section 1 , the goal of the deployed WSN (ei-

her clustered or unclustered) is to detect the presence of a tar-

et from its electromagnetic emissions (namely, radio communi-

ations). This is meaningful in several scenarios, e.g., in ELINT or

ognitive radio applications. In particular, target detection is per-

ormed by scanning a proper radio bandwidth, over which the tar-

et is assumed to transmit its own radio signal with fixed power 1 

 T —relaxing this assumption leads to a further generalization of

ur approach and is the subject of our current research activity.

ithout loss of generality, we assume that all sensors in the ROI

ay sense, if present, an electromagnetic signal emitted by the tar-

et. In particular, we assume that each node carries out a spec-

rum swipe over a sufficiently large number of subbands. In each

ubband, target presence (i.e., its electromagnetic emission) can be

odeled by a Bernoulli random variable S , which can assume the

alue S 0 = 0 (no target) or S 1 = 1 (target is present) with probabil-

ties p 0 and p 1 = 1 − p 0 , respectively. In particular, in the applica-

ions of interest it holds that p 1 � 0.5. We assume that the elec-

romagnetic signal emitted by the target is received by the nodes

n the WSN according to a classical cellular-like model, accounting

or path-loss and shadowing—this is realistic, given the considered

cenarios in Fig. 1 . 
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From a statistical point of view, for each subband of the consid-

red scanned spectrum, event detection at each node is based on

inary hypothesis testing. On the basis of the assumptions above,

he k th sensor node ( k = 1 , . . . , N) has to distinguish between two

ndependent Gaussian sequences: 

k (� ) = 

{
s k (� ) + n k (� ) if S = S 1 
n k (� ) if S = S 0 

� = 1 , . . . , m (1)

here: m is the number of observed consecutive samples in a sin-

le sensing “block” used to take a binary decision on the pres-

nce/absence of a signal; { s k ( � )} are the samples of the signal re-

eived by the k th sensor (and emitted by the target); and the

oise terms { n k ( � )} are modeled as i.i.d. zero-mean complex Gaus-

ian random variables with fixed variance P N (corresponding to the

oise power), constant for all sensors. Note that an implicit as-

umption in (1) is that the phenomenon status does not change

ver m consecutive observations—this is reasonable in ELINT sce-

arios with sufficiently slowly moving (with respect to the nodes’

ampling rate) target. Since it is reasonable to assume that the sen-

ors have no a-priori knowledge about the modulation and pulse

haping formats adopted by the target, in (1) { s k ( � )} is modeled

 sequence of i.i.d. zero-mean complex Gaussian random variables

ith variance P (k ) 
R 

(corresponding to the received power) [ 16 , Sec-

ion 4.2.1]. The power P (k ) 
R 

depends on the transmit power P T and

n the path-loss and shadowing terms characterizing the link be-

ween the target and the k th node. In the following, we assume

hat path-loss and shadowing terms are constant over all m con-

ecutive observations: this is compliant with the previous assump-

ion of sufficiently slowly varying wireless scenarios. 

Describing the bidimensional space of reference (i.e., the ROI)

s the complex plane, we denote as v k and v t the positions of the

 th sensor and of the target, respectively. We assume that there is

o knowledge of nodes’ positions in the network—this is an exten-

ion left for future work. The Euclidean distance d k between the

arget and the k th sensor is d k = | v t − v k | . Therefore, the sensing

ignal-to-Noise Ratio (SNR) experienced by the k th sensor node,

ith respect to the target, can be expressed as follows: 

k (d k , h ) = 

P (k ) 
R 

P N 
= 

Kh k P T 
P N d 

α
k 

(2)

here the Friis formula for the received power has been used [17] ,

n which α is the path-loss attenuation exponent (adimensional, in

he range 2 ÷4), K is the gain at 1 m from the transmitter (i.e., the

arget), and h k is the log-normal shadowing coefficient of the link

etween the target and the k th sensor with standard deviation σ
adimensional, dB). 

The k th sensor uses the observables { μk ( � )} to make a local

inary decision X k . Under the observation model (1) , an Energy

etection (ED) scheme is the optimal detector in the Neyman–

earson sense [18] . In particular, the following decision variable

as to be evaluated: 

 k = 

m ∑ 

� =1 

| μk (� ) | 2 (3)

nd the binary decision rule at the sensor is given by 

 k = U(W k − τ ) = 

{
1 if W k ≥ τ
0 if W k < τ

(4)

here τ is a properly selected decision threshold and U ( ·) is the

nit-step function. 

.2. Simplified clustering model 

In order to derive an analytical approach for system perfor-

ance evaluation, it is necessary to introduce a simplified cluster-

ng model (with respect to a more realistic, but simulation-based,
 -means-based approach), especially to characterize the generic

osition of the target inside the ROI. To this aim, we adopt a sim-

le “homogeneous” model according to which: (i) each cluster cov-

rs a circular area with radius r = R/ 
√ 

N c and (ii) the clusters’ cen-

ers are regularly arranged inside the ROI following an hexagonal

acking with radius r . We denote by V C, i ( i = 1 , . . . , N c ) the com-

lex representation of the coordinates of the center of the i th cir-

ular cluster. Note that, in the considered model, there is a slight

verlapping among adjacent clusters, which is due to the assump-

ion of circular clusters. Hence, this model tends to slightly over-

stimate the average cluster size. Considering the number of nodes

C i | belonging to cluster C i , we make the assumption of uniform

istribution of the nodes inside the clusters, i.e., a node belongs to

 given cluster with probability 1/ N c . Accordingly, the Probability

ass Function (PMF) of the number of nodes in a cluster can be

ritten as 

p n = P ( |C i | = n ) = 

(
N 

n 

)(
1 

N c 

)n (
1 − 1 

N c 

)N−n 

. (5) 

ote that in the proposed clustering model the correlation among

ifferent clusters are not taken into account. In fact, we assume,

or simplicity, that the numbers of sensors in different clusters are

ndependent. However, since the number of sensors N in the ROI

s fixed, the numbers of sensors in different clusters are strictly

orrelated. For instance, if N c = 2 and one of cluster has a small

umber of sensors, then the other cluster is forced to have a large

umber of sensors. Although this effect is not captured in our ana-

ytical model, simulation results show good trend-wise agreement.

The simplified clustering model introduced above allows to in-

estigate the system performance analytically. Nevertheless, this

odel captures the essence of the detection problem at hand: in

act, in Section 4 simulation-based and analytical performance re-

ults will be in very good agreement. 

.3. Energy consumption model 

Energy consumption is an important issue for WSNs formed by

attery-equipped sensor nodes. In order to determine the average

nergy consumption at each node, it is necessary to identify the

arious states of a node and the corresponding energy costs. To

his aim, we consider a Carrier Sense Multiple Access with Col-

ision Avoidance (CSMA/CA) random access in the entire network

in the absence of clustering) or in each cluster (in the presence of

lustering). Being the WSN deployed for surveillance purposes, we

ssume the use of beacons to improve the performance of the ran-

om access protocol. In order to simplify the energy consumption

odel (since this is not the focus of our paper), we assume that

nergy consumption complies with the well-established model for

he IEEE 802.15.4 standard with beacon-enabled channel access

nd Guaranteed Time Slot (GTS) to each node [19] —we remark that

his model is applicable, with minor modifications, also to other

eacon-enabled CSMA/CA-based networks. This access protocol al-

ows to guarantee low latency transmissions, which is a very im-

ortant requirement for the scenario at hand. 

As typical in surveillance scenarios, we assume that the C2

ithdraws energy from the power grid and, as such, energy con-

umption is not a concern. Therefore, in the remainder we focus

n the energy consumption at sensor nodes (in both clustered and

nclustered scenarios) and at the CHs (in clustered scenarios). 

.3.1. Clustered scenario 

In each cluster, the CH plays the role of coordinator and, as

uch, is responsible for both managing the superframe structure

nd sending the periodic beacon at the beginning of each super-

rame. The superframe is divided into an active period (with du-
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ration T A ) and an inactive period. During the inactive period, all

nodes enter into a sleep node, thus saving energy. 

In the considered sensing scenario, we assume that part of the

active period is exploited by the nodes to sense the channel with

the aim of detecting the possible presence of the target. Hence, we

assume that the remaining part of the active period is divided into

a proper number (denoted as M ) of time slots, each with duration

T M 

: one of them is used to send the beacon (from the CH to the

nodes of its cluster), while the remaining M − 1 slots (the number

of nodes in the cluster must not be larger than M − 1 ) are assigned

by the CH to the controlled nodes. A dedicated slot is either used

by the node to inform the CH that a target has been detected or

is left unused (if no target has been detected). As for the trans-

missions from the CHs towards the C2, we assume that they occur

following the same beacon-enabled strategy with GTSs of the clus-

ters, with the C2 playing the role of coordinator. 

As shown in [20] , a node can be in one of the following five

states: transmit (Tx), receive (Rx), channel sense (CS), idle, and

sleep. The various states are characterized by different average

power (and, thus, energy) consumptions. In particular, for short

range communications, i.e., intra-cluster communications between

sensor nodes and CH, we can assume that Tx, Rx, and CS are char-

acterized by the same power level, referred to as P M 

in the follow-

ing. This is reasonable in IEEE 802.15.4-based networks, where the

corresponding energy consumptions are all on the order of a few

milliwatts [21,22] . Considering long-range communications, we as-

sume that the CHs use a transmit power γ times higher than in

the case of inter-cluster communications, i.e., γ P M 

. The power con-

sumptions in the idle and sleep states are assumed to be negligible

with respect to those in the other states. 

Owing to the above assumptions, one can derive the average

energy consumed by a sensor node in a superframe: we denote

this energy as E S , where S refers to the sensing status (pres-

ence/absence of detection). In each superframe, regardless of the

sensing status, a sensor node consumes energy to read the bea-

con and to perform channel sensing. In the presence of target de-

tection ( S = S 1 ), further energy is consumed to transmit the posi-

tive decision (i.e., estimated target presence) from the node to the

CH. Hence, denoting by β the time dedicated to target sensing ex-

pressed in terms of equivalent time slots, the overall energy con-

sumption at a sensor node is: 

E S = 

{
E S 1 = ( 2 + β) P M 

T M 

if S = S 1 
E S 0 = ( 1 + β) P M 

T M 

if S = S 0 
(6)

where: P M 

T M 

is the energy consumed in Rx state (receiving the

beacon); P M 

βT M 

is the energy consumed in the CS state; and P M 

T M 

is the energy consumed in Tx state (if transmitting a decision to

the CH). 

We now evaluate the energy, denoted as E CH , consumed by a

CH during a superframe. We preliminary observe that in the active

period of a superframe a CH is always active, being either in the Rx

state (while receiving packets from sensor nodes) or in the Tx state

(while transmitting the beacon). Moreover, assuming that a CH has

sensing capabilities, energy is consumed also to perform channel

sensing. Finally, a CH consumes energy for packet transmission to-

ward the C2 if a target is detected inside the cluster. The energy

consumed by a CH during a superframe can thus be expressed as

follows: 

E CH = 

{
E CH , 1 = ( γ + M + β) P M 

T M 

with target detection 

E CH , 0 = ( M + β) P M 

T M 

without target detection . 

(7)

In particular, in (7) it has been assumed that while the Tx power

(to send a decision to the C2) increases to γ P M 

, the Rx power (to

receive the beacon from the C2) remains fixed to P . The esti-
M 
ated presence or absence of the target inside a cluster depends

n the local (inside a cluster) fusion rule adopted at the CH and

ill be discussed later. 

.3.2. Unclustered scenario 

In the absence of clustering, i.e., in a scenario where the C2

lays the role of coordinator for all nodes in the ROI, the energy

onsumed by a sensor node in a superframe, denoted as E 
( f ) 
S 

, can

e directly obtained from (6) by taking into account that the trans-

it power to reach the C2 is γ P M 

, thus obtaining: 

 

( f ) 
S 

= 

{
E ( f ) 

S 1 
= ( γ + 1 + β) P M 

T M 

if S = S 1 

E ( f ) 
S 0 

= ( 1 + β) P M 

T M 

if S = S 0 . 
(8)

.4. Fusion rule 

.4.1. Clustered scenario 

The optimum fusion strategy at the CH derives from the appli-

ation of the Neyman–Pearson criterion and requires the evalua-

ion of the likelihood ratio between the probabilities of observing

he reports received from the nodes under the two hypothesis S 1 
nd S 0 . Denoting Q i = |C i | as the number of nodes in i th cluster,

he likelihood ratio can be expressed as follows: 

 (X 1 , . . . , X Q i ) = 

P (X 1 , . . . , X Q i | S 1 ) 
P (X 1 , . . . , X Q i | S 0 ) 

S 1 
≷ 

S 0 

λi (9)

here λi is a decision threshold which, in general terms, should be

ptimized for the i th cluster (e.g., depending on the value of Q i ).

ccording to the considered communication setup, only the nodes

hich detect the target transmit to the CH: this is equivalent to

onsidering that all the other nodes send a null report. Note that

nder hypothesis S 1 , { X k } are not independent, since they jointly

epend on the position V T of the target. However, owing to the

ymmetry of the considered scenario and to the lack of a-priori in-

ormation about the positions of the nodes, the probability associ-

ted with the reports received by the CH is permutation-invariant,

.e., P (X 1 , . . . , X Q i | S 1 ) = P (	(X 1 , . . . , X Q i ) | S 1 ) for any permutation 	.

hen, it follows that L (X 1 , . . . , X Q i ) depends only on the number of

nes contained in (X 1 , . . . , X Q i ) , i.e., on the value of the following

andom variable: 

 

(i ) 
tot = 

Q i ∑ 

k =1 

X k . (10)

herefore, X (i ) 
tot is a sufficient statistic for detection in the i th clus-

er. Due to the nature of the problem at hand, we also argue that

 (X 1 , . . . , X Q i ) is a monotonically increasing function of X (i ) 
tot , thus

eading to the following reformulation of the optimal decision rule

t the CH: 

 

(i ) 
tot 

S 1 
≷ 

S 0 

T CH (11)

here T CH is a threshold whose value must be selected to obtain

he desired FA and CD probabilities at the CH. Note that, unlike

he general formulation in (9) , in (11) the decision threshold is in-

ependent of the cluster index i : this is consistent with the sim-

lified clustering model introduced in Section 2.2 . 

As for the final decision rule at the C2, following the same con-

iderations outlined above, it is straightforward to express the op-

imal decision rule as follows: 

 tot = 

N c ∑ 

i =1 

f c 2 (X 

(i ) 
tot ) 

S 1 
≷ 

S 0 

T C2 (12)
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here T C2 is a threshold to be properly selected in order to obtain

he final FA and CD probabilities and 

f c 2 (X 

(i ) 
tot ) = 

{
1 if X 

(i ) 
tot ≥ T CH 

0 if X 

(i ) 
tot < T CH . 

.4.2. Unclustered scenario 

In the absence of clustering, i.e., in the presence of direct com-

unications between the sensor nodes and the C2, the decision

ule at the C2 can be easily obtained from the derivation in the

lustered scenario. In particular, from (10) one can write: 

 tot −unc = 

N ∑ 

k =1 

X k 

S 1 
≷ 

S 0 

T C2 −u (13) 

here the value of the decision threshold T C2-u has to be properly

elected. 

. Analytical performance evaluation 

.1. Local performance: CD and FA probabilities at a sensor node 

The local FA and CD probabilities, under the proposed ED

cheme, can be defined as follows (see, e.g., [23] and references

herein): 

 

(k ) 
FA 

� P (X k = 1 | S 0 ) = P (W k ≥ τ | S 0 ) 
 

(k ) 
CD 

� P (X k = 1 | S 1 ) = P (W k ≥ τ | S 1 ) . 
sing straightforward manipulations, the local FA and CD probabil-

ties at a sensor with ED can then be expressed as [18] 

 

(k ) 
FA 

= 
u ( mτN , m ) 

 

(k ) 
CD 

= 
u 

(
mτN 

1 + γk (d k , h ) 
, m 

)
(14) 

here τN = P N τ is the normalized threshold with respect to the

oise power and 
u (a, n ) � 

∫ ∞ 

a x n −1 e −x d x/ (n − 1)! is the upper in-

omplete gamma function [24] . 

Note that the FA probability is the same for all sensors and does

ot depend on their distances from the target: we thus denote

 

(k ) 
FA 

= P FA , ∀ k ∈ { 1 , 2 , . . . , N} . The CD probability, instead, depends

n the distance d k and on the shadowing term h k . Averaging with

espect to the statistical distribution of the shadowing term, the

ollowing expression for the average CD probability at distance d k 
an be obtained: 

 CD (d k ) = E h k 

[
P (k ) 

CD 
(d k , h k ) 

]
= 

1 √ 

2 πσ 2 

∫ ∞ 

−∞ 


u 

(
mτN 

1 + γk (d k , 10 

S/ 10 ) 
, m 

)
e −

S 2 

2 σ2 d S (15) 

hich has no closed-form solution, but can be numerically evalu-

ted. Note that, since the average CD probability in (15) is a func-

ion of d k only, for notational simplicity we have removed the su-

erscript k . 

.2. Global performance 

.2.1. Preliminary geometric considerations 

Denote the position of the target (in the complex plane cen-

ered at the C2) as V T = Xe j2 π�. Owing to the circular ROI with

nitary radius R = 1 , it follows that � ∼ Unif(0, 1) and the Proba-

ility Density Function (PDF) of X can be written as: 

f X (δ) = 

{
2 δ δ ∈ (0 , 1) 
0 otherwise . 

(16) 
wing to the circular symmetry of the scenario, we can con-

ider � = 0 : therefore, V T = X . Denote now: R i as the distance be-

ween the center of i th cluster and the target, i.e., R i = R i (X ) =
 | V C ,i − X| 2 ; D as the distance between a generic node belonging

o cluster i and the target at position V T . The PDF of D , denoted

s f D ( ρ| R i (X ) = r i (x ) ) , can be derived by considering two differ-

nt cases, depending on the relative position (outside or inside) of

he target with respect to the i th cluster. 

In the first case , the target is outside the i th cluster, i.e., r i ( x ) > r ,

here r = R/ 
√ 

N c = 1 / 
√ 

N c . This situation is illustrated in Fig. 2 (a).

or ρ < r i (x ) − r, the annulus centered at V T with inner radius

and outer radius ρ + dρ is outside the cluster with radius 1

nd, therefore, we have f D ( ρ| r i (x ) ) = 0 . On the other hand, when

 i (x ) − r ≤ ρ < r i (x ) + r only a portion of the annulus lies within

he cluster and, therefore, f D ( ρ| r i ( x )) is obtained by dividing the

rea of this portion and the area of surface of the cluster. Through

imple geometric considerations, one obtains: 

f D ( ρ| r i (x ) ) = 

2 ρ

π
cos −1 

(
ρ2 + r 2 

i 
(x ) − r 2 

2 ρr i (x ) 

)
. (17) 

inally, for ρ ≥ r i (x ) + r the annulus is fully outside the cluster and,

ence, f D ( ρ| r i (x ) ) = 0 . 

In the second case , the target is inside the i th cluster, i.e., r i ( x ) ≤
 . This situation is illustrated in Fig. 2 (b). Following similar consid-

rations as above, we note that for ρ < r − r i (x ) the annulus cen-

ered at V T with inner radius ρ and outer radius ρ + dρ is fully in-

luded into the cluster and, therefore, it follows that f D (ρ| r i (x )) =
 ρ . On the other hand, when r − r i (x ) ≤ ρ < r i (x ) + r only a por-

ion of the annulus lies within the cluster and, in this case, f D ( ρ)

an be expressed as follows: 

f D ( ρ| r i (x ) ) = 

2 ρ

π

[
π − cos −1 

(
r 2 − ρ2 − r 2 

i 
(x ) 

2 ρr i (x ) 

)]
. (18) 

inally, for ρ ≥ r i (x ) + r the annulus is fully outside the cluster and,

ence, f d ( ρ| r i (x ) ) = 0 . 

.2.2. CD And FA probabilities 

Denote as P CD (r i (δ)) the average probability of CD of a generic

ode belonging to the i th cluster, averaged over all possible dis-

ances d with respect to the target, for a given target position

 = δ. One can thus write: 

 CD (r i (δ)) = 

∫ 
ρ

P CD (ρ) f d (ρ| r i (δ))d ρ (19)

here P CD (ρ) is given by (15) . 

Denote now as P (i ) 
CD 

(δ, Q i ) the final CD probability at the CH of

he i th cluster, conditioned on the target position δ and on the

umber of nodes Q i in the i th cluster: in other words, P (i ) 
CD 

(δ, Q i )

s the CD probability achieved by fusing all the received reports

t the i th CH. Taking into account the fusion rules outlined in

ection 2.4 , one can write: 

 

(i ) 
CD 

(δ, Q i ) = 

Q i ∑ 

k = T CH 

(
Q i 

k 

)[
P CD (r i (δ)) 

]k [
1 − P CD (r i (δ)) 

]Q i −k 
(20)

here T CH has been introduced in (11) . By averaging over the num-

er Q i of elements in the i th cluster, one obtains: 

 

(i ) 
CD 

(δ) = 

N ∑ 

n =0 

P (i ) 
CD 

(δ, n ) p n (21)

here p n is given by (5) . 

It is now possible to get the final CD probability P 
( f ) 
CD 

(δ) at the

2 conditioned on δ. To this aim, denote: N c = { 1 , . . . , N c } , i.e., the

et of integers indexing all the clusters in the network; A (m, k )

s the set of integers containing the m th combination, out of all
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Fig. 2. Computation of f d ( ρ| r i ( x )): (a) the target is outside the cluster; (b) the target is inside the cluster. 
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possible combinations of elements in N c taken k at a time, with

m = 1 , . . . , 
(

N c 
k 

)
and k = 0 , . . . , N c ; A 

′ (m, k ) as the complementary

set of A (m, k ) , i.e., the set of all elements in N c which are not in

A (m, k ) . Using the introduced notations, one obtains: 

P ( f ) 
CD 

(δ) = 

N c ∑ 

k = T C2 

( N c k ) ∑ 

m =1 

∏ 

i ∈A (m,k ) 

P (i ) 
CD 

(δ) 
∏ 

i ∈A ′ (m,k ) 

[
1 − P (i ) 

CD 
(δ) 

]
. (22)

Taking into account the PDF in (16) , from (22) the unconditional

CD probability at the C2 can be expressed as follows: 

P ( f ) 
CD 

= 2 

∫ 1 

0 

P ( f ) 
CD 

(δ) δ d δ. (23)

We now turn our attention to the FA probability. Since, in this

case, the local decisions (at the sensors) do not depend on the po-

sition of the target, it can be concluded that the FA probability is

the same for all clusters. Hence, denoting by P FA ( Q i ) the FA proba-

bility at the i th CH conditioned on the number of sensors Q i in the

cluster, one has: 

P FA (Q i ) = 

Q i ∑ 

k = T CH 

(
Q i 

k 

)
(P FA ) 

k (1 − P FA ) 
Q i −k . (24)

By averaging over the number Q i of elements in the i th cluster,

taking into account the distribution of the number of nodes per

cluster given by (5) , the average FA probability at each CH can be

expressed as follows: 

P (c) 
FA 

= 

N ∑ 

n =0 

P FA (n ) p n . (25)

The final FA probability P 
( f ) 
FA 

at the C2 thus becomes 

P ( f ) 
FA 

= 

N c ∑ 

i = T C2 

(
N c 

i 

)
(P (c) 

FA 
) i (1 − P (c) 

FA 
) N c −i . (26)

It can be observed that, setting N c = 1 , the just derived ana-

lytical framework (in terms of CD and FA probabilities) for a sce-

nario with clustering can be easily extended to evaluate the CD

and FA probabilities in the absence of clustering. Indeed, in this

case the PMF { p n } of the number of nodes in the single (network-

wide) cluster in (5) reduces to 

p n = 

{
1 if n = N 

0 otherwise 

which corresponds to the case with a fixed number ( N ) of nodes in

the cluster. Moreover, in this case the single cluster V C , 1 is located

h  
t the origin of the ROI and, accordingly, r i (δ) = δ. We remark that,

iven the model considered in Section 2 , the CD and FA probabil-

ties obtained in the unclustered scenario are exact (there is no

nalytical approximation). 

.2.3. Energy consumption 

Leveraging the previous analysis, the goal of this section is to

erive the per-node average energy consumption as a function of

he detection performance. In fact, sensors consume energy when

hey perform target detection and, therefore, they have data to be

ransmitted to the final collector. In particular, we distinguish be-

ween the cases with the presence ( S = S 1 ) and absence ( S = S 0 ) of

he target. 

Let us first consider the case with S = S 1 , i.e., when the target is

resent in the ROI, and assume to have a clustered network, i.e.,

 c > 1. Denote by E 
(1) 
S (i, δ) the average energy consumption of

 sensor node in i th cluster, conditioned on the position δ of the

arget. Hence, referring to the results derived in Section 2.3 and

ection 3.2.2 , one can write 

 

(1) 

S (i, δ) = E S, 1 P CD (r i (δ)) + E S, 0 
[
1 − P CD (r i (δ)) 

]
. (27)

Denote by E 
(1) 
CH (i, δ, n ) the average energy consumption of the

H in the i th cluster, conditioned on the target position δ and on

he number of nodes n in the cluster. Leveraging again the results

erived in Section 2.3 and Section 3.2.2 , it follows: 

 

(1) 

CH (i, δ, n ) = E CH, 1 P 
(i ) 
CD 

(δ, n ) + E CH , 0 

[
1 − P (i ) 

CD 
(δ, n ) 

]
. (28)

ssume that, in each cluster, each node periodically becomes the

H (i.e., a rotation CH election strategy is used): this corresponds

o assuming that each node has probability 1/ n of becoming a CH,

 being the number of nodes in the cluster. At this point, the av-

rage consumed energy per node in the i th cluster, conditioned on

, can be expressed as: 

 

(1) 

avg (i, δ) = 

N ∑ 

n =1 

[ 
n − 1 

n 

E 
(1) 

S (i, δ) + 

1 

n 

E 
(1) 

CH (i, δ, n ) 
] 

p n . (29)

The overall network-wide per-node average energy consump-

ion E 
(1) 
avg can now be evaluated by averaging over ( i ) the clusters

nd ( ii ) the position δ of the target, thus obtaining: 

 

(1) 

avg = 2 

1 

N c 

∫ 1 

0 

[ 

N c ∑ 

i =1 

E 
(1) 

avg (i, δ) 

] 

δ d δ. (30)

Note that, in the absence of clustering, there is no CH and,

ence, it is straightforward to derive the average per-node con-
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2 We remark that cluster formation goes beyond the scope of this paper. The use 

of the k -means algorithm is reasonable, assuming an initial set-up phase when the 

sensor nodes are deployed on the field. 
umed energy E 
(1 , f ) 
avg as follows: 

 

(1 , f ) 

avg = 2 

∫ 1 

0 

[
E ( f ) 

S, 1 
P CD (δ) + E ( f ) 

S, 0 
(1 − P CD (δ)) 

]
δ d δ (31) 

here P CD (δ) can be evaluated by setting N c = 1 , as discussed at

he end of Section 3.2.2 . 

The case with S = S 0 can be straightforwardly investigated by

eplacing P CD with P FA . In particular, in the clustered scenario one

btains: 

E 
(0) 

S = E S, 1 P FA + E S, 0 (1 − P FA ) 

 

(0) 

CH (n ) = E CH, 1 P FA (n ) + E CH , 0 [ 1 − P FA (n ) ] 

E 
(0) 

avg = 

N ∑ 

n =1 

[ 
n − 1 

n 

E 
(0) 

S + 

1 

n 

E 
(0) 

CH (n ) 
] 

p n . 

In the absence of clustering, the average per-node consumed

nergy can be expressed as follows: 

 

(0 , f ) 

avg = E ( f ) 
S, 1 

P FA + E ( f ) 
S, 0 

(1 − P FA ) . (32)

. Simulation-based performance evaluation 

.1. Parametric optimization 

The analytical framework derived in Section 3 allows to evalu-

te the performance of the system in terms of CD/FA probabilities

and, then, energy consumption) as a function of a set of param-

ters that are not explicitly indicated in the CD/FA derivations to

void abuse of notations. We quickly recall the following parame-

ers embedded in the analytical framework: 

• the transmit power P T of the target; 
• the noise power P N ; 
• the shadowing parameter σ and the path loss exponent α; 
• the number m of samples in the acquisition phase at each sen-

sor node; 
• the ROI radius R (set to 1 in the analytical framework in

Section 3 ); 
• the number of nodes N and the number of clusters N c ; 
• the local decision threshold τN (at each sensor node) and the

fusion thresholds T CH (at CHs) and T C2 (at the C2). 

While some of these parameters are out of control (namely, P T ,

 N , σ and α), the other parameters can be considered as design pa-

ameters and we adopt the following optimization strategy: upon

xing the parameters m , R , N , and N c , the values of the thresholds

N , T CH and T C2 are selected in order to optimize the performance.

In order to highlight the dependency of P 
( f ) 
CD 

and P 
( f ) 
FA 

on τN ,

 CH , and T C2 , we introduce the following functions: 

 

( f ) 
FA 

= F ( τN , T CH , T C2 ) 

 

( f ) 
CD 

= G ( τN , T CH , T C2 ) . (33) 

he threshold τN is then numerically evaluated through the fol-

owing Neyman–Pearson approach. Denoting by P 
(tgt) 
CD 

the desired

network-wide) P CD , for each possible value of τN we determine

ll possible threshold pairs (T ∗
CH 

, T ∗
C2 

) which allow to achieve P 
(tgt) 
CD 

,

.e.: 

 

T ∗CH (τN ) , T 
∗

C2 (τN ) ] : G ( τN , T 
∗

CH , T 
∗

C2 ) = P (tgt) 
CD 

. (34)

ence, the optimal τN , denoted as τ ∗
N 
, is selected as the value

hich allows to minimize P 
( f ) 
FA 

, i.e.: 

∗
N = arg min 

τN 

F ( τN , T 
∗

CH (τN ) , T 
∗

C2 (τN ) ) . (35) 
To summarize, given a configuration of the input parameters

namely, P T , P T , σ , α, m , R , N , and N c ) and a value of the tar-

et CD probability P 
(tgt) 
CD 

, the decision/fusion thresholds are set to

τ ∗
N 
, T ∗

CH 
(τ ∗

N 
) , T ∗

C2 
(τ ∗

N 
) 
]
: this allows to minimize P 

( f ) 
FA 

and we will re-

er to this minimum as P ∗
FA 

. 

The following setup is considered for the performance analy-

is carried out in the next Section 4.2 . The path-loss exponent

is set to 4 (assuming a strong attenuation, realistic for large-

cale monitoring scenarios) and the shadowing parameter σ is

et to 5 dB (a typical value for terrestrial propagation). As an-

icipated in Section 3 , the radius R of the ROI is normalized to

. Hence, we introduce the ratio γ0 = KP T /P N which, according to

2) and from the assumption of unitary radius R = 1 , represents

he average (averaged over the shadowing) SNR at a sensor lo-

ated at distance 1 from the target. As for the IEEE 802.15.4 su-

erframe structure, we consider that the number of time slots M

s set to allow, on average, transmission from all sensors in the

luster during an active period, i.e., M = � N/N c � . Then, we assume

hat the maximum number of measurements at each sensor node

uring a time slot is 16: in general, m ≤ 16 observed consec-

tive measurements will be considered ( {| μk (� ) | 2 } m 

� =1 
, according

o (3) ), so that the relative sensing time during an active period

an be written as β = m/ 16 . Finally, the transmit power for long-

ange communications (between CH and C2) is assumed 20 times

igher than P M 

, i.e., γ = 20 —typically, IEEE 802.15.4 node have a

ransmit power of 1 mW, whereas SubGHz node can transmit up

o 300 mW (e.g., Xbee PRO 868 RF modules, http://ftp1.digi.com/

upport/documentation/90 0 01020 _ F.pdf ). 

.2. Comparative performance evaluation 

We now present performance results with the aim of provid-

ng a comprehensive comparison between clustered and unclus-

ered network topologies. As the analytical framework developed

n Section 3 provides an approximate (average) performance eval-

ation, we also show Monte Carlo simulation-based performance

esults. In this case, the CD/FA probabilities and the energy con-

umption are obtained by averaging over different network topol-

gy realizations. In particular, at each simulation run, the positions

f sensors and of the target are randomly selected in the ROI (this

uarantees various realizations for the received powers at the sen-

ors); then, clusters are formed using the well-known k -means al-

orithm [14,15] and the CH is randomly chosen among the nodes

f a cluster. 2 Simulations have been performed so that the 95% of

onfidence interval is achieved. The confidence interval is denoted

n the following by a vertical bar around the simulation point. 

We first investigate the per-node average consumed energy

ormalized to P M 

T M 

, i.e., normalized to the energy for transmit-

ing/receiving/sensing over a single slot. More precisely, the nor-

alized energy is evaluated as a function of: the target network-

ide Missed Detection (MD) probability P 
(tgt) 
MD 

= 1 − P 
(tgt) 
CD 

(in Fig. 3 )

nd the minimum network-wide FA probability P (∗) 
FA 

(in Fig. 4 ). In

oth figures, clustered scenarios with N c = 4 clusters are assumed.

he performance results obtained through the analytical approach

solid lines) are directly compared with those obtained through

imulations (dashed lines). In Fig. 3 , four values for the number

 of sensors in the ROI are considered (namely, 12, 24, 36, 48),

hereas in Fig. 4 , to avoid overlap among similar curves, only the

wo limiting values of N are considered (namely, 12 and 48). In

oth figures, m is set to 8, i.e., β = 0 . 5 . It can be observed that

he analytical curves quite tightly upper bound the simulation-

http://ftp1.digi.com/support/documentation/90001020_F.pdf
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Fig. 3. Average per-node consumed energy as a function of the target MD proba- 

bility. Various values of the number of nodes N are considered. For each value of 

N , analytical (solid lines) and simulation (dashed lines) results are presented. In all 

cases, N c = 4 and m = 8 ( β = 0 . 5 ). 
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Fig. 4. Average per-node consumed energy as a function of the minimum reachable 

FA probability. Two values of the number of nodes N are considered. For each value 

of N , analytical (solid lines) and simulation (dashed lines) results are presented. In 

all cases, N c = 4 and m = 8 ( β = 0 . 5 ). 
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based results, thus validating the analytical framework proposed

in Section 3 . The same accuracy is achieved also for different pa-

rameter settings, which are omitted here for the sake of concise-

ness. From the results in Fig. 3 it can be observed, as intuitively

expected, that the energy consumption is a decreasing function of

the MD probability: in other words, in order to achieve a better

performance in terms of CD probability (namely, to lower the MD

probability) it is necessary to spend more energy. On the other

hand, for a given CD probability, increasing the number N of sen-

sors allows to decrease the required energy. Indeed, increasing the

number of sensors in the ROI allows to guarantee a better coverage

of the area if interest and, ultimately, allows to improve the system

performance in terms of target detection capabilities. Considering

the FA probability ( Fig. 4 ), the results need some further discus-

sion. Indeed, in this case the consumed energy tends to decrease

for decreasing values of the FA probability and of the number of
ensors: in other words, the performance improves for lower en-

rgy consumption and fewer sensors. This is not surprising: in fact,

ncreasing the number of sensors increases the probability of cor-

ectly detecting a target at the cost of higher consumed energy. 

Having validated the accuracy of the proposed analytical frame-

ork for performance evaluation, this framework can be exploited

o investigate further the impact of clustering on the system per-

ormance. More precisely, fixing the number N of sensors in the

OI to 48 and the relative sensing interval β to 0.5, we investi-

ate the impact of the number of clusters N c . In Fig. 5 , the average

er-node consumed energy is shown as a function of the target

D probability for various values of N c (namely, 2, 3, 4, 6, 12),

hile in Fig. 6 the consumed energy is shown as a function of

he minimum FA probability, considering only the limiting values
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Fig. 7. Average per-node consumed energy, for both S 1 and S 0 cases, as a function 

of the number of sensed samples m : comparison between clustered ( N c = 4 , solid 

lines) and unclustered (dashed lines) scenarios. In all cases, P (t gt ) 
MD 

= 0 . 02 and N = 48 . 
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Fig. 8. Minimum achievable FA probability as a function of the number of sensed 

samples m : comparison between clustered ( N c = 4 , solid line) and unclustered 

(dashed line) scenarios. In all cases, P (t gt ) 
MD 

= 0 . 02 and N = 48 . 
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s  

o  
f N c in the previous figure (namely, 2 and 12). For comparison

urposes, in the two figures we also report the results obtained

n the unclustered scenario (dashed curve). With reference to the

D probability (see Fig. 5 ), it is worth noting that the choice of

he best clustering setting, i.e., the best value of N c , depends on

he required CD probability. Indeed, for stringent requirements, i.e.,

ery low P 
(tgt) 
MD 

, it is preferable to have a smaller number of clus-

ers, whereas for looser requirements it may be convenient to in-

rease N c . The rationale for this behavior lies in the trade-off, at

he CH, between the following tendencies: ( i ) the smaller N c , the

arger the number of sensors in the cluster, i.e., the higher M and,

ccordingly, the higher the energy consumption for managing the

luster; ( ii ) the larger N c , the larger the number of transmissions

owards the C2, i.e., the higher the consumed energy. Hence, when

he CD probability is high, the number of transmissions towards

2 is large and the behavior described in ( ii ) is the major source of

nergy consumption. On the other hand, the opposite situation oc-

urs for lower values of the CD probability. As for the unclustered

cenario, it is worth noting that for low MD (equivalently, high

D) probabilities the performance is worse than in the clustered

ases, while the opposite situation occurs for looser CD probabil-

ty requirements. This behavior is due to the fact that the higher

he target detection probability, the higher the effect of long-range

ommunications in determining the total consumed energy. Con-

erning the FA probability (see Fig. 6 ), it can be observed that for

easonably low value of the FA probability, the unclustered case

llows to achieve a lower consumed energy with respect to the

lustered cases. This is due to the fact that in this case the num-

er of transmissions towards the C2 is not the major source of en-

rgy consumption. The situation is somehow different for high FA

robability (i.e., P (∗) 
FA 

close to 1), which, however, is not a case of

ractical interest. Eventually, increasing the number of clusters al-

ows to save energy for low P (∗) 
FA 

, which is a situation where the

ase ( i ) described above has a higher effect in determining the to-

al consumed energy. On the contrary, for high values of P (∗) 
FA 

the

nergy decreases by decreasing N c , since, in this case, the number

f transmissions towards the C2 increases. 

In the next two figures we show the effect of the number of

ensed samples m on both the energy consumption ( Fig. 7 ) and

he minimum achievable FA probability P (∗) 
FA 

( Fig. 8 ), for a prede-

ned target MD probability P 
(tgt) 
MD 

= 0 . 02 . In both figures, clustered
 N c = 4 , solid lines) and unclustered scenarios are compared. In

ig. 7 , the average consumed energies are evaluated in the cases

 = S 1 (target presence) and S = S 0 (target absence) and, for each

ase, in both clustered and unclustered scenarios. In the S 1 case,

he energies in the clustered ( E 
(1) 
avg ) and unclustered ( E 

(1 , f ) 
avg ) scenar-

os are increasing functions of m : this is an expected result since,

n this case, setting the CD probability corresponds, approximately,

o setting the report transmission rate and, hence, the term which

ainly influences the final consumed energy is the sensing period

nterval. In the S 0 case, instead, increasing m has a two-fold effect:

n one hand, it increases the time spent to sense the channel; on

he other hand, it allows to noticeably decrease the FA probability

as shown in Fig. 8 ) and this, ultimately, tends to decrease the con-

umed energy. As a matter of fact, we observe that for low values

f m the energy is a decreasing function of m , whereas increasing

 the effect of increasing the sensing period overcomes the second

ffect (FA probability reduction). From the comparison between the

lustered and unclustered scenarios, it turns out that clustering al-

ows to save energy in the case S 1 , while the opposite occurs in

he case S 0 . From the results in Fig. 8 , it can be concluded that

he clustered and unclustered scenarios behave almost identically

n terms of P ∗
FA 

. 

. Concluding remarks 

In this paper, we have considered WSN-based surveillance sce-

arios, where sensor nodes cooperate to detect the presence of an

nwanted target node over a ROI. Leveraging recent results in cog-

itive wireless networking, we have first introduced the system

odel, encompassing unclustered and clustered cases. Proper de-

ision rules (at the single sensors) and fusion rules (at CHs and

2) have been derived. An innovative analytical performance eval-

ation framework has then been proposed, leading to an efficient

arametric optimization (in terms of decision and fusion thresh-

lds). The accuracy of the proposed analytical framework has been

onfirmed through simulation-based results. The obtained results,

y quantifying inherent trade-offs between the per-node consumed

nergy, topology (clustered/unclustered), FA/CD/MD probabilities, 

nd sensing duration, provide useful design guidelines. 

While in the current work the positions of the target and the

ensor nodes are assumed to be unknown, future work will focus

n the extension of the current framework exploiting side informa-
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tion, namely, knowledge of the positions of sensor nodes (as this is

a very reasonable assumption in surveillance systems). Moreover,

the use of different fusion rules, exploiting this side information

and/or multi-level quantization at the sensors, represents an inter-

esting future research direction. 
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